首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  国内免费   1篇
化学   127篇
晶体学   4篇
力学   17篇
数学   36篇
物理学   33篇
  2023年   4篇
  2022年   7篇
  2021年   5篇
  2020年   11篇
  2019年   8篇
  2018年   5篇
  2017年   14篇
  2016年   9篇
  2015年   4篇
  2014年   25篇
  2013年   12篇
  2012年   16篇
  2011年   30篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   16篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
91.
Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film.  相似文献   
92.
Infusion-induced changes in the phenolics, antioxidant and colour propeties of St John’s wort (genus, Hypericum; specie, Hypericum perforatum L.) teas were studied for the first time. SJW teas prepared as three different infusions and coded as three (3?min), six (6?min) and twelve minutes (12?min). Investigation of phenolic compounds were performed by LC-DAD-ESI-MS/MS. A total of 18 phenolics including six chlorogenic acids, three phenolic acids, seven flavonoids and two naphtodianthrones were detected. It is worth noting that the phenolic profiles of St John’s wort teas were similar. However, the quantities of phenolic compounds individually and totally changed significantly for different infusion times. The highest total concentration was detected in 12?min (60.03?mg/L), followed by 6?min (54.81?mg/L) and 3?min (33.07?mg/L). The main difference for different infusion times was the hyperoside found as the most abundant phenolic only in 3?min samples. However, for 6?min and 12?minin infusions, chlorogenic acid was the most dominant phenolic compound. Similar to phenolics, antioxidant capacity of tea infusions showed an increasing trend with the extension of infusion time.  相似文献   
93.
The development of different classes of porous polymers by linking organic molecules using new chemistries still remains a great challenge. Herein, we introduce for the first time the synthesis of covalent quinazoline networks (CQNs) using an ionothermal synthesis protocol. Zinc chloride (ZnCl2) was used as the solvent and catalyst for the condensation of aromatic ortho‐aminonitriles to produce tricycloquinazoline linkages. The resulting CQNs show a high porosity with a surface area up to 1870 m2 g?1. Varying the temperature and the amount of catalyst enables us to control the surface area as well as the pore size distribution of the CQNs. Furthermore, their high nitrogen content and significant microporosity make them a promising CO2 adsorbent with a CO2 uptake capacity of 7.16 mmol g?1 (31.5 wt %) at 273 K and 1 bar. Because of their exceptional CO2 sorption properties, they are promising candidates as an adsorbent for the selective capture of CO2 from flue gas.  相似文献   
94.
A hybrid computational fluid dynamics (CFD) and computational aeroacoustics (CAA) method is used to compute the acoustic field of turbulent hot jets at a Reynolds number Re=316,000 and a Mach number M=0.12. The flow field computations are performed by highly resolved large-eddy simulations (LES), from which sound source terms are extracted to compute the acoustic field by solving the acoustic perturbation equations (APE). Two jets are considered to analyze the impact of exit conditions on the resulting jet sound field. First, a jet emanating from a fully resolved non-generic nozzle is simulated by solving the discrete conservation equations. This computation of the jet flow is denoted free-exit-flow (FEF) formulation. For the second computation, the nozzle geometry is not included in the computational domain. Time averaged exit conditions, i.e. velocity and density profiles of the first formulation, plus a jet forcing in form of vortex rings are imposed at the inlet of the second jet configuration. This formulation is denoted imposed-exit-flow (IEF) formulation. The free-exit-flow case shows up to 50% higher turbulent kinetic energy than the imposed-exit-flow case in the jet near field, which drastically impacts noise generation. The FEF and IEF configurations reveal quite a different qualitative behavior of the sound spectra, especially in the sideline direction where the entropy source term dominates sound generation. This difference occurs since the noise sources generated by density and pressure fluctuations are not perfectly modeled by the vortex ring forcing method in the IEF solution. However, the total overall sound pressure level shows the same qualitative behavior for the FEF and IEF formulations. Towards the downstream direction, the sound spectra of the FEF and IEF solutions converge.  相似文献   
95.
We demonstrate a time-resolved single-photon detection technique based on ultrafast sum-frequency generation, providing femtosecond measurement capability for single photons in photonic quantum information processing. Noncollinear broadband upconversion in periodically poled MgO-doped stoichiometric lithium tantalate with an ultrafast pump and detection with a Si single-photon counter enable efficient detection of IR photons and temporal resolution of ~150 fs. We utilize the timing resolution to map the generation efficiency profile along the propagation axis of a periodically poled KTiOPO(4) crystal, revealing its local grating quality with millimeter resolution. We also apply the technique to two-photon coincidence measurements and directly demonstrate time anticorrelation between coincident-frequency entangled photons that are parametrically generated under extended phase-matching conditions.  相似文献   
96.
Novel fluorescent chiral molecular micelles (FCMMs) were synthesized, characterized, and employed as chiral selectors for enantiomeric recognition of non-fluorescent chiral molecules using steady state fluorescence spectroscopy. The sensitivity of the fluorescence technique allowed for investigation of low concentrations of chiral selector (3.0 × 10−5 M) and analyte (5.0 × 10−6 M) to be used in these studies. The chiral interactions of glucose, tartaric acid, and serine in the presence of FCMMs poly(sodium N-undecanoyl-l-tryptophanate) [poly-l-SUW], poly(sodium N-undecanoyl-l-tyrosinate) [poly-l-SUY], and poly(sodium N-undecanoyl-l-phenylalininate) [poly-SUF] were based on diastereomeric complex formation. Poly-l-SUW had a significant fluorescence emission spectral difference as compared to poly-l-SUY and poly-l-SUF for the enantiomeric recognition of glucose, tartaric acid, and serine. Studies with the hydrophobic molecule α-pinene suggested that poly-l-SUY and poly-l-SUF had better chiral discrimination ability for hydrophobic analytes as compared to hydrophilic analytes. Partial-least-squares regression modeling (PLS-1) was used to correlate changes in the fluorescence emission spectra of poly-l-SUW due to varying enantiomeric compositions of glucose, tartaric acid, and serine for a set of calibration samples. Validation of the calibration regression models was determined by use of a set of independently prepared samples of the same concentration of chiral selector and analyte with varying enantiomeric composition. Prediction ability was evaluated by use of the root-mean-square percent relative error (RMS%RE) and was found to range from 2.04 to 4.06%. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
97.
The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include (1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals’ observed sequences; (2) the information leakage to a fusion center with respect to the remote source is considered a new privacy leakage metric; (3) the function computed is allowed to be a distorted version of the target function, which allows the storage rate to be reduced compared to a reliable function computation scenario, in addition to reducing secrecy and privacy leakages; (4) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless and lossy single-function computation with two transmitting nodes, which recover previous results in the literature. For special cases, including invertible and partially invertible functions, and degraded measurement channels, simplified lossless and lossy rate regions are characterized, and one achievable region is evaluated as an example scenario.  相似文献   
98.
Two new phosphinite ligands based on ionic liquids [(Ph2PO)C7H14N2Cl]Cl ( 1 ) and [(Cy2PO)C7H14N2Cl]Cl ( 2 ) were synthesized by reaction of 1‐(3‐chloro‐2‐hydoxypropyl)‐3‐methylimidazolium chloride, [C7H15N2OCl]Cl, with one equivalent of chlorodiphenylphosphine or chlorodicyclohexylphosphine, respectively, in anhydrous CH2Cl2 and under argon atmosphere. The reactions of 1 and 2 with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) yield complexes cis‐[M([(Ph2PO)C7H14N2Cl]Cl)2Cl2] and cis‐[M(Cy2PO)C7H14N2Cl]Cl)2Cl2], respectively. All complexes were isolated as analytically pure substances and characterized using multi‐nuclear NMR and infrared spectroscopies and elemental analysis. The catalytic activity of palladium complexes based on ionic liquid phosphinite ligands 1 and 2 was investigated in Suzuki cross‐coupling. They show outstanding catalytic activity in coupling of a series of aryl bromides or aryl iodides with phenylboronic acid under the optimized reaction conditions in water. The complexes provide turnover frequencies of 57 600 and 232 800 h?1 in Suzuki coupling reactions of phenylboronic acid with p‐bromoacetophenone or p‐iodoacetophenone, respectively, which are the highest values ever reported among similar complexes for Suzuki coupling reactions in water as sole solvent in homogeneous catalysis. Furthermore, the palladium complexes were also found to be highly active catalysts in the Heck reaction affording trans‐stilbenes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
In this study, an electrocatalyst based on 2-thiolbenzimidazole (TBI) functionalized reduced graphene oxide (rGO) with platinum and palladium nanoparticles (Pt-PdNPs) was synthesized. The successful synthesis of nanomaterials and the prepared glassy carbon electrode (GCE) surfaces were confirmed by transmission electron microscope, X-ray photo electron spectroscopy, scanning electron microscope, electrochemical impedance spectroscopy and X-ray diffraction method. The effective surface areas of TBIrGO/GCE, PdNPs/TBIrGO/GCE, PtNPs/TBIrGO/GCE and Pt-PdNPs/TBIrGO/GCE were calculated to be 324, 578, 667 and 1189 cm2/mg, respectively. According to the results, the electrochemical surface area of the Pt-PdNPs/TBIrGO is 3.67, 2.06 and 1.78 times higher than those of TBIrGO, PdNPs/TBIrGO and PtNPs/TBIrGO, respectively. The Pt-PdNPs/TBIrGO/GCE also exhibited higher peak current for methanol oxidation than those of comparable TBIrGO/GCE, PdNPs/TBIrGO/GCE, PtNPs/TBIrGO/GCE modified GCEs, thus providing evidence for its higher electro-catalytic activity.  相似文献   
100.
Plasmon-enhanced electrocatalysis (PEEC), based on a combination of localized surface plasmon resonance excitation and an electrochemical bias applied to a plasmonic material, can result in improved electrical-to-chemical energy conversion compared to conventional electrocatalysis. Here, we demonstrate the advantages of nano-impact single-entity electrochemistry (SEE) for investigating the intrinsic activity of plasmonic catalysts at the single-particle level using glucose electrooxidation and oxygen reduction on gold nanoparticles as model reactions. We show that in conventional ensemble measurements, plasmonic effects have minimal impact on photocurrents. We suggest that this is due to the continuous equilibration of the Fermi level (EF) of the deposited gold nanoparticles with the EF of the working electrode, leading to fast neutralization of hot carriers by the measuring circuit. The photocurrents detected in the ensemble measurements are primarily caused by photo-induced heating of the supporting electrode material. In SEE, the EF of suspended gold nanoparticles is unaffected by the working electrode potential. As a result, plasmonic effects are the dominant source of photocurrents under SEE experimental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号