首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   8篇
  国内免费   2篇
化学   125篇
力学   1篇
数学   13篇
物理学   18篇
  2022年   8篇
  2021年   6篇
  2020年   6篇
  2019年   14篇
  2018年   18篇
  2017年   9篇
  2016年   11篇
  2015年   6篇
  2014年   14篇
  2013年   14篇
  2012年   17篇
  2011年   4篇
  2010年   12篇
  2009年   3篇
  2008年   4篇
  2006年   5篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
111.
Jafarzadeh  Bagher  Sady  Fereshteh 《Positivity》2019,23(1):111-123
Positivity - Let X and Y be locally compact Hausdorff spaces. In this paper we study surjections $$T: A \longrightarrow B$$ between certain subsets A and B of $$C_0(X)$$ and $$C_0(Y)$$ ,...  相似文献   
112.
The graphene oxide (GO) nanosheets were produced by chemical conversion of graphite, and were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR). An electrochemical sensor based on Ni/graphene (GR) composite film was developed by incorporating Ni2+ into the graphene oxide film modified glassy carbon electrode (Ni/GO/GCE) through the electrostatic interactions with negatively charged graphene oxide. The Ni2+/graphene modified glassy carbon electrode (Ni/GR/GCE) was prepared by cyclic voltammetric scanning of Ni/GO/GCE in the potential range from ?1.5 to 0.2 V at 50 mV s?1 for 5 cycles. The electrochemical activity of Ni/GR/GCE was illustrated in 0.10 M NaOH using cyclic voltammetry. The Ni/GR/GCE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple. The introduction of conductive graphene not only greatly facilitates the electron transfer of Ni2+, but also dramatically improves the long-term stability of the sensor by providing the electrostatic interactions. Ni/GR/GCE also shows good electrocatalytic activity toward the oxidation of glucose. The Ni/GR/GCE gives a good linear range over 10 to 2700 μM with a detection limit of 5 μM towards the determination of glucose by amperometry. This sensor keeps over 85% activity towards 0.1 mM glucose after being stored in air for a month, respectively. Furthermore, the modified sensor was successfully applied to the sensitive determination of glucose in blood samples.  相似文献   
113.
In this work, green synthesis of cobalt doped titanium dioxide (Co‐TiO2) has been carried out in aqueous medium using gelatin. The Co‐TiO2 particles have been characterized using transmission electron microscopy (TEM), X‐ray diffraction (XRD), energy dispersive X‐ray (EDAX), FT‐IR spectroscopy and voltammetry techniques. XRD results show pure Co‐TiO2 and TiO2 powders with average crystallite size about 12 nm and 15 nm, respectively. Co loaded in TiO2 hasn't influence crystalline structure. Moreover, efficient Co‐TiO2‐based anode was fabricated by casting of the Co‐TiO2 solution on glassy carbon electrode (Co‐TiO2/GCE). The electrocatalysis of oxygen evolution reaction (OER) at Co‐TiO2/GCE has been examined using linear scanning voltammetry (LSV) in alkaline media. The OER is significantly enhanced at Co‐TiO2/GCE, as demonstrated by a negative shift in the LSV curve at the Co‐TiO2/GCE compared to that obtained at the unmodified one. The value of energy saving of oxygen gas at a current density of 5 mA cm?2 is 12.6 kW h kg?1. The low cost as well as the marked stability of the modified electrode make it promising candidate in industrial water electrolysis process.  相似文献   
114.
115.
Green synthesis of pure nickel oxide nanoparticles (nano-NiO) in aqueous medium has been carried out using gelatin. The particles have been characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). Gelatin plays an important role in the formation of the nano-NiO. TEM image shows the formation of nano-NiO with average particle size 16 nm, which agrees well with the XRD data. Moreover, efficient and stable nano-NiO-based anodes were fabricated by casting of the nano-NiO and multi-walled carbon nanotube solution (NiO-MWNT) on glassy carbon (NiO-MWNT/GC), platine (NiO-MWNT/Pt), and carbon paste (NiO-MWNT/CP) electrodes. The electrocatalysis of oxygen evolution reaction (OER) at modified electrodes has been examined using linear scanning voltammetry (LSV). The OER is significantly enhanced upon modification of the electrodes with NiO-MWNT, as demonstrated by a negative shift in the LSV curves at the NiO-MWNT-modified electrodes compared to that obtained at the unmodified ones. The maximum electrocatalytic activity toward the OER was obtained in alkaline media. The values of energy saving of oxygen gas at a current density of 5 mA cm?2 Pt, CP, and GC electrodes are 14.1, 16.0, and 21.6 kW h kg?1, respectively. The low cost as well as the marked stability of the modified electrodes makes them promising candidates in industrial water electrolysis process.  相似文献   
116.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   
117.
As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients’ blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively.  相似文献   
118.
We have applied density functional theory calculations to study polarizability of the Si60H60 derivatives with epoxide moieties (Si60H60?2nOn with n up to 30). The results show that mean polarizability, α, of oxygen-containing silicon fullerene derivatives is higher than that of Si60H60. The mean polarizabilities of the isomers slightly depend on the positional relationship of the epoxide moieties, and are determined mainly by the number of epoxide moieties. Mean polarizabilities of Si60H60?2nOn linearly increase with n, and are characterized by the depression of polarizability. The formula describing the mean polarizability as a function of the number of epoxide groups has been obtained, which may be important for the design of silicon-containing nanostructures with regulated polar parameters.  相似文献   
119.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was applied to the enantioseparation of three binaphthyl derivatives using neutral CDs (i.e., beta- and gamma-CD) in combination with various chiral amino acid-based polymeric surfactants (PSs). Both the D- and L-configurations of poly(sodium N-undecanoyl alaninate), poly(sodium N-undecanoyl leucinate), and poly(sodium N-undecanoyl valinate) (poly(L-SUV)) were synthesized. The retention behavior of the three binaphthyl derivatives under optimum electrophoretic conditions using a single chiral additive (PS or CD) is discussed. In addition, the effect of CD cavity size and stereochemical configuration of polymeric surfactants on selectivity (alpha) and resolution (Rs) was investigated. The enantioseparation of (+/-)1,1'-binaphthyl-2,2'-diamine gave a reversal of enantiomeric order when using beta-CD in combination with any of the three D-configuration PS. However, better enantioseparation is obtained when using the corresponding L-configuration PS with beta-CD. A reversal of migration order (RMO) for the enantiomers of (+/-)1,1'-bi-2-naphthol was observed upon the addition of 10 mM gamma-CD to poly(L-SUV). However, no RMO of (+/-)1,1'-bi-2-naphthol was seen when either beta-CD or gamma-CD was combined with D-PS. The enantiomers of (+/-)1,1'-binaphthyl-2,2'-diyl hydrogen phosphate showed little enantioselective behavior toward the PS alone. However, combined D- or L-PS and beta-CD or gamma-CD systems gave increased Rs and alpha values. The chiral recognition of binaphthyl derivatives observed resulting from the various combinations of two chiral selectors is discussed.  相似文献   
120.
Rhodium-catalyzed hydroformylation of 1-octene in the presence of different phosphine and phosphine oxide ligands has been investigated. The molecular structure of new phosphine ligand, fluorenylidine methyl phenyl diphenylphosphine, was determined by single-crystal X-ray crystallography. Parameters such as different ligands, molar ratio of ligand to rhodium complex, ratio of olefin to rhodium complex, pressure of CO : H2 mixture, and time of the reaction were studied. The linear aldehyde was the main product when the phosphine ligands were used as auxiliary ligands while the selectivity was changed to the branched products when the related phosphine oxide ligands were used. Under optimized reaction conditions, in the presence of [Rh(acac)(CO)(Ph3P)]-di(1-naphthyl)phenyl phosphine oxide, conversion of 1-octene reached 97% with 87% selectivity of branched aldehyde.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号