首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21567篇
  免费   4166篇
  国内免费   3215篇
化学   15725篇
晶体学   299篇
力学   1336篇
综合类   302篇
数学   2590篇
物理学   8696篇
  2024年   56篇
  2023年   386篇
  2022年   751篇
  2021年   774篇
  2020年   911篇
  2019年   893篇
  2018年   768篇
  2017年   731篇
  2016年   1014篇
  2015年   1093篇
  2014年   1331篇
  2013年   1635篇
  2012年   1972篇
  2011年   2065篇
  2010年   1493篇
  2009年   1504篇
  2008年   1601篇
  2007年   1392篇
  2006年   1309篇
  2005年   1089篇
  2004年   910篇
  2003年   695篇
  2002年   704篇
  2001年   601篇
  2000年   470篇
  1999年   420篇
  1998年   328篇
  1997年   332篇
  1996年   287篇
  1995年   241篇
  1994年   224篇
  1993年   161篇
  1992年   113篇
  1991年   129篇
  1990年   110篇
  1989年   76篇
  1988年   75篇
  1987年   64篇
  1986年   46篇
  1985年   33篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   18篇
  1980年   16篇
  1979年   7篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
991.
Biogenic amines have been reported in many foods such as fish, meat, and soy sauce. The consumption of foods containing high concentrations of biogenic amines has been associated with health hazards. In this study, a green and efficient method using supercritical fluid chromatography coupled with single quadrupole mass spectrometry was developed for determination of biogenic amines in soy sauce. The chromatographic and mass spectrometry conditions were systematically optimized in terms of selectivity and peak shape. Nine biogenic amines were well separated within 25 min on a Cosmosil 5HP column using 5% (v/v) water and 0.2% (v/v) ammonia solution in methanol as mobile phase additives at a backpressure of 120 bar and temperature of 40°C. The established method was fully validated regarding the linearity, sensitivity, precision, and accuracy. The limits of detection and limits of quantification ranged from 0.03 to 10.50 μg/mL and 0.10 to 23.1 μg/mL, respectively. The relative standard deviations for intra‐ and interday precisions were all lower than 9.36% and the recoveries ranged from 75.82 to 99.63% and 80.10 to 99.89% for two levels of standards spiked in soy sauce, respectively. Finally, the established method was successfully applied to the quantitative analysis of biogenic amines in soy sauce.  相似文献   
992.
High‐performance liquid chromatography coupled with photodiode array detection has been extensively applied in many fields and the peaks among the analyzed samples can be shifted due to the variations of instrumental and experimental conditions. In multivariate analysis, retention time alignment is an important pretreatment step. Hence, the shifted peaks in high‐performance liquid chromatography coupled with photodiode array detection three‐dimensional spectra should be aligned for further analysis. Being motivated by this purpose, the interval correlated shifting method combined with the proposed data arrangement methods are recommended and employed on high‐performance liquid chromatography coupled with photodiode array detection data as a demonstration. We validate the alignment performance of the proposed method through comparison the consistency of the retention time before and after alignment. The obtained results demonstrated that the proposed method is capable of successful aligning the employed data. Additionally, the interval correlated shifting method combined with the data arrangement modes is implemented in an easy‐to‐use graphical user interface environment and so can be operated easily by users not familiar with programming languages.  相似文献   
993.
Microfluidic chip electrophoresis has been widely employed for separation of various biochemical species owing to its advantages of low sample consumption, low cost, fast analysis, high throughput, and integration capability. In this article, we reviewed the development of four different modes of microfluidics‐based electrophoresis technologies including capillary electrophoresis, gel electrophoresis, dielectrophoresis, and field (electric) flow fractionation. Coupling detection schemes on microfluidic electrophoresis platform were also reviewed such as optical, electrochemical, and mass spectrometry method. We further discussed the innovative applications of microfluidic electrophoresis for biomacromolecules (nucleic acids and proteins), biochemical small molecules (amino acids, metabolites, ions, etc.), and bioparticles (cells and pathogens) analysis. The future direction of microfluidic chip electrophoresis was predicted.  相似文献   
994.
Insomnia is a common clinical disease that can seriously damage the normal lives of sufferers. Suan‐Zao‐Ren decoction has been used to treat insomnia for a long time. However, the underlying molecular mechanism of Suan‐Zao‐Ren decoction is still not clear. In this study, the nontargeted metabolomics based on high‐resolution mass spectrometry and multiple statistical approaches were initially used to investigate the changes of potential serum and brain biomarkers and metabolic pathways in the insomnia model rat. Principal component analysis‐discriminate analysis indicated that the Suan‐Zao‐Ren decoction treatment improved the metabolic phenotype insomnia. Moreover, the heatmap analysis identified the most important biomarkers involved in insomnia. According to the pathway analysis, phenylalanine metabolism, tryptophan metabolism, and so on were recognized as the most affected metabolic pathways associated with insomnia disease. These findings provided a comprehensive understanding of the regulative effects of Suan‐Zao‐Ren decoction on the host metabolic phenotype of the insomnia rats. Our work demonstrated that the metabolomics approach is a promising tool that could help us to conduct the exploration of the therapeutic effects and mechanism of traditional Chinese medicines.  相似文献   
995.
A novel, facile, and robust strategy was proposed to increase the pore size and mechanical strength of cryogels. By mixing the monomers of acrylamide and 2‐hydroxyethyl methacrylate as the precursor, a monolithic copolymer cryogel with large interconnected pores and thick pore walls was prepared. Hydrogen bonding between the two monomers contributed to the entanglement and aggregation of the copolymers, thickening the pore walls and resulting in larger pore sizes. Analysis via mercury porosimetry demonstrated that the interconnected pore diameter of the copolymer cryogel ranged from 10‐350 µm, which was far larger than that of the cryogels from one monomer (10‐50 µm). Additionally, the thicker pore walls of the copolymer cryogel improved its mechanical strength. Affinity cryogels were prepared through covalent immobilization using Tris(hydroxymethyl)aminomethane as a coupling agent, and the affinity binding of lysozymes on Tris‐cryogel was evaluated by the Langmuir isothermal adsorption with the maximum adsorption capacity of 360 mg/g. Compared with that of the Tris‐cryogels produced from one monomer, the copolymer Tris‐cryogel exhibited higher adsorption capacity and lysozyme purity, when the chicken egg white solution flowed solely driven by gravity. This work provides a new avenue for designing and developing supermacroporous cryogels for bioseparation.  相似文献   
996.
Du  Min  Zhang  Feng  Zhang  Xiaofei  Dong  Wentao  Sang  Yuanhua  Wang  Jianjun  Liu  Hong  Wang  Shuhua 《中国科学:化学(英文版)》2020,63(12):1767-1776
Science China Chemistry - Rechargeable aqueous zinc ion batteries (ZIBs), with the easy operation, cost effectiveness, and high safety, are emerging candidates for high-energy wearable/portable...  相似文献   
997.
Yuan  Jun  Zhang  Chujun  Chen  Honggang  Zhu  Can  Cheung  Sin Hang  Qiu  Beibei  Cai  Fangfang  Wei  Qingya  Liu  Wei  Yin  Hang  Zhang  Rui  Zhang  Jidong  Liu  Ye  Zhang  Huotian  Liu  Weifang  Peng  Hongjian  Yang  Junliang  Meng  Lei  Gao  Feng  So  Shukong  Li  Yongfang  Zou  Yingping 《中国科学:化学(英文版)》2020,63(8):1159-1168
Recent advances in material design for organic solar cells(OSCs) are primarily focused on developing near-infrared nonfullerene acceptors, typically A-DA′D-A type acceptors(where A abbreviates an electron-withdrawing moiety and D, an electron-donor moiety), to achieve high external quantum efficiency while maintaining low voltage loss. However, the charge transport is still constrained by unfavorable molecular conformations, resulting in high energetic disorder and limiting the device performance. Here, a facile design strategy is reported by introducing the "wing"(alkyl chains) at the terminal of the DA′D central core of the A-DA′D-A type acceptor to achieve a favorable and ordered molecular orientation and therefore facilitate charge carrier transport. Benefitting from the reduced disorder, the electron mobilities could be significantly enhanced for the"wing"-containing molecules. By carefully changing the length of alkyl chains, the mobility of acceptor has been tuned to match with that of donor, leading to a minimized charge imbalance factor and a high fill factor(FF). We further provide useful design strategies for highly efficient OSCs with high FF.  相似文献   
998.
We have developed a facile and efficient procedure for the synthesis of diarylphosphate esters and amides. Using Zn(acac)2 as the catalyst, the reaction of diarylphosphoryl azides with aliphatic alcohols and phenols through an unusual P?N bond cleavage provided a number of diarylphosphate esters in good yields (22 examples, up to 94%). Additionally, various diarylphosphate amides were obtained from the corresponding amines in excellent yields as well (8 examples, up to 96%).  相似文献   
999.
Organic‐inorganic hybrid perovskite solar cells (PSCs) have aroused tremendous research interest for their high efficiency, low cost and solution processability. However, the involvement of toxic lead in state‐of‐art perovskites hinders their market prospects. As an alternative, Sn‐based perovskites exhibit similar semiconductor characteristics and can potentially achieve comparable photovoltaic performance in comparison with their lead‐based counterparts. The main challenge of developing Sn‐based PCSs lies in the intrinsic poor stability of Sn2+, which could be oxidized and converted to Sn4+. Notably, introduction of SnX2 (X=Cl, Br, I) additive becomes indispensable in the fabrication process, which highlights the importance of incorporating a reducing agent to improve the device stability. Additionally, efforts are made to utilize other reducing agents with different functions for the further enhancement of device performance. Currently, Sn‐based PSCs could attain a record efficiency over 10% with great stability. In this review, we present the recent progress on reducing agents for improving the stability of Sn‐based PSCs, and we hope to shed light on the challenges and opportunities of this research field.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号