首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384399篇
  免费   3528篇
  国内免费   1175篇
化学   202754篇
晶体学   6024篇
力学   16607篇
综合类   9篇
数学   44107篇
物理学   119601篇
  2021年   3069篇
  2020年   3405篇
  2019年   3849篇
  2018年   5273篇
  2017年   5108篇
  2016年   7229篇
  2015年   4308篇
  2014年   6806篇
  2013年   16997篇
  2012年   12862篇
  2011年   15568篇
  2010年   11050篇
  2009年   10854篇
  2008年   14633篇
  2007年   14811篇
  2006年   13999篇
  2005年   12573篇
  2004年   11453篇
  2003年   10290篇
  2002年   10062篇
  2001年   11194篇
  2000年   8720篇
  1999年   6648篇
  1998年   5572篇
  1997年   5600篇
  1996年   5155篇
  1995年   4586篇
  1994年   4512篇
  1993年   4430篇
  1992年   4850篇
  1991年   4950篇
  1990年   4769篇
  1989年   4585篇
  1988年   4552篇
  1987年   4501篇
  1986年   4257篇
  1985年   5599篇
  1984年   5949篇
  1983年   4804篇
  1982年   5188篇
  1981年   5061篇
  1980年   4792篇
  1979年   5035篇
  1978年   5275篇
  1977年   5270篇
  1976年   5290篇
  1975年   4958篇
  1974年   4936篇
  1973年   5203篇
  1972年   3385篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
781.
The local adsorption geometry of CO adsorbed in different states on Ni(1 0 0) and on Ni(1 0 0) precovered with atomic hydrogen has been determined by C 1s (and O 1s) scanned-energy mode photoelectron diffraction, using the photoelectron binding energy changes to characterise the different states. The results confirm previous spectroscopic assignments of local atop and bridge sites both with and without coadsorbed hydrogen. The measured Ni–C bondlengths for the Ni(1 0 0)/CO states show an increase of 0.16 ± 0.04 Å in going from atop to bridge sites, while comparison with similar results for Ni(1 1 1)/CO for threefold coordinated adsorption sites show a further lengthening of the bond by 0.05 ± 0.04 Å. These changes in the Ni–CO chemisorption bondlength with bond order (for approximately constant adsorption energy) are consistent with the standard Pauling rules. However, comparison of CO adsorbed in the atop geometry with and without coadsorbed hydrogen shows that the coadsorption increases the Ni–C bondlength by only 0.06 ± 0.04 Å, despite the decrease in adsorption energy of a factor of 2 or more. This result is also reproduced by density functional theory slab calculations. The results of both the experiments and the density functional theory calculations show that CO adsorption onto the Ni(1 0 0)/H surface is accompanied by significant structural modification; the low desorption energy may then be attributed to the energy cost of this restructuring rather than weak local bonding.  相似文献   
782.
The results of experimental investigation into the mechanical properties of blends of low-density polyethylene (LDPE) with chlorinated polyethylene (CPE) in tension are presented. The specimens of pure LDPE, CPE, and nine types of LDPE/CPE blends, with different content of components at 10 wt.% intervals, were examined. Data on the influence of blend composition on the tensile stress-strain diagram, elastic modulus, yield stress, breaking stress, and ultimate elongation are obtained. The results of investigations of creep are also reported. It is found that the creep compliance (the total current compliance minus the elastic compliance) obeys the power law of creep.__________Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 3, pp. 391–404, May–June, 2005.  相似文献   
783.
784.
785.
For three‐dimensional flows with one inhomogeneous spatial coordinate and two periodic directions, the Karhunen–Loeve procedure is typically formulated as a spatial eigenvalue problem. This is normally referred to as the direct method (DM). Here we derive an equivalent formulation in which the eigenvalue problem is formulated in the temporal coordinate. It is shown that this so‐called method of snapshots (MOS) has some numerical advantages when compared to the DM. In particular, the MOS can be formulated purely as a matrix composed of scalars, thus avoiding the need to construct a matrix of matrices as in the DM. In addition, the MOS avoids the need for so‐called weight functions, which emerge in the DM as a result of the non‐uniform grid typically employed in the inhomogeneous direction. The avoidance of such weight functions, which may exhibit singular behaviour, guarantees satisfaction of the boundary conditions. The MOS is applied to data sets recently obtained from the direct simulation of turbulence in a channel in which viscoelasticity is imparted to the fluid using a Giesekus model. The analysis reveals a steep drop in the dimensionality of the turbulence as viscoelasticity is increased. This is consistent with the results that have been obtained with other viscoelastic models, thus revealing an essential generic feature of polymer‐induced drag reduced turbulent flows. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   
786.
Secondary ion emission from Fe-Cr, Fe-Ni, Cr-Ni binary alloys and Fe-Cr-Ni ternary alloys (concentration range 10–90% of the alloying element) bombarded with 3 keV Xe+ ions has been investigated as a function of concentration of the studied element in the multicomponent system. The linear increase of the secondary ion intensity with concentration of the element in the sample was found only for a low-concentration region. There are pronounced nonlinearities in the medium and high-concentration regions. A possible explanation for such nonlinearities based on chemical and physical matrix effects is proposed.  相似文献   
787.
788.
789.
790.
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号