首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17884篇
  免费   363篇
  国内免费   76篇
化学   10298篇
晶体学   136篇
力学   614篇
数学   2436篇
物理学   4839篇
  2022年   100篇
  2021年   133篇
  2020年   194篇
  2019年   146篇
  2018年   139篇
  2017年   119篇
  2016年   263篇
  2015年   289篇
  2014年   315篇
  2013年   639篇
  2012年   720篇
  2011年   894篇
  2010年   532篇
  2009年   446篇
  2008年   764篇
  2007年   809篇
  2006年   784篇
  2005年   811篇
  2004年   671篇
  2003年   551篇
  2002年   524篇
  2001年   492篇
  2000年   449篇
  1999年   279篇
  1998年   238篇
  1997年   234篇
  1996年   304篇
  1995年   289篇
  1994年   263篇
  1993年   299篇
  1992年   294篇
  1991年   263篇
  1990年   216篇
  1989年   208篇
  1988年   236篇
  1987年   215篇
  1986年   180篇
  1985年   252篇
  1984年   219篇
  1983年   174篇
  1982年   215篇
  1981年   190篇
  1980年   195篇
  1979年   192篇
  1978年   195篇
  1977年   162篇
  1976年   171篇
  1975年   134篇
  1974年   155篇
  1973年   136篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Polymersomes have gained much interest within the biomedical field as drug delivery systems due to their ability to transport and protect cargo from the harsh environment inside the body. For an improved drug efficacy, control over cargo release is however also an important factor to take into account. An often employed method is to incorporate pH sensitive groups in the vesicle membrane, which induce disassembly and content release when the particles have reached a target site in the body with the appropriate pH, such as the acidic microenvironment of tumor tissue or the endosome. In this paper, biodegradable poly(ethylene glycol)-poly(caprolactone-gradient-trimethylene carbonate)-based polymeric vesicles have been developed with disassembly features at mild acidic conditions. Modifying the polymer backbone with imidazole moieties results in vesicle disassembly upon protonation due to the lowered pH. Furthermore, upon increasing the pH efficient re-assembly into vesicles is observed due to the switchable amphiphilic nature of the polymer. When this re-assembly process is conducted in presence of cargo, enhanced encapsulation is achieved. Furthermore, the potency of the polymeric system for future biomedical applications such as adjuvant delivery is demonstrated.  相似文献   
992.
A comprehensive understanding of the structure, self-assembly mechanism, and dynamics of one-dimensional supramolecular polymers in water is essential for their application as biomaterials. Although a plethora of techniques are available to study the first two properties, there is a paucity in possibilities to study dynamic exchange of monomers between supramolecular polymers in solution. We recently introduced hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize the dynamic nature of synthetic supramolecular polymers with only a minimal perturbation of the chemical structure. To further expand the application of this powerful technique some essential experimental aspects have been reaffirmed and the technique has been applied to a diverse library of assemblies. HDX-MS is widely applicable if there are exchangeable hydrogen atoms protected from direct contact with the solvent and if the monomer concentration is sufficiently high to ensure the presence of supramolecular polymers during dilution. In addition, we demonstrate that the kinetic behavior as probed by HDX-MS is influenced by the internal order within the supramolecular polymers and by the self-assembly mechanism.  相似文献   
993.
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.  相似文献   
994.
The propensity of the new, phenylphosphonate-stabilized polyoxotungstate [(C6H5PVO)2P4W24O92]16− to act as a precursor for new 3d metal-functionalized polyanions has been investigated. Reactions with MnII and CuII induce the formation of the previously unknown polyoxotungstate archetype {P4W27}, isolated as salts of the polyanions [Na⊂{MnII(H2O)}{WO(H2O)}P4W26O98]13− ( 1 ) and [K⊂{CuII(H2O)}{W(OH)(H2O)}P4W27O99]14− ( 2 ), which were characterized in the solid state (single-crystal X-ray diffraction, elemental and TG analyses, IR spectroscopy, SQUID magnetometry) and in aqueous solution (UV/Vis spectroscopy, cyclic voltammetry).  相似文献   
995.
After earlier unsuccessful attempts, this work reports the application of covalent templating for the synthesis of mechanically interlocked molecules (MiMs) bearing no supramolecular recognition sites. Two linear strands were covalently connected in a perpendicular fashion by a central ketal linkage. After subsequent attachment of the first strand to a template via temporary benzylic linkages, the second was linked to the template in a backfolding macrocyclization. The resulting pseudo[1]rotaxane structure was successfully converted to a [2]catenane via a second macrocyclization and cleavage of the ketal and temporary linkages.  相似文献   
996.
The synthesis of unsubstituted oligo-para-phenylenes ( OPP ) exceeding para-hexaphenylene—in the literature often referred to as p-sexiphenyl—has long remained elusive due to their insolubility. We report the first preparation of unsubstituted para-nonaphenylenes ( 9PP s) by extending our precursor route to poly-para-phenylenes ( PPP ) to a discrete oligomer. Two geometric isomers of methoxylated syn- and anti-cyclohexadienylenes were synthesized, from which 9PP was obtained via thermal aromatization in thin films. 9PP was characterized via optical, infrared and solid-state 13C NMR spectroscopy as well as atomic force microscopy and mass spectrometry, and compared to polymeric analogues. Due to the lack of substitution, para-nonaphenylene, irrespective of the precursor isomer employed, displays pronounced aggregation in the solid state. Intermolecular excitonic coupling leads to formation of H-type aggregates, red-shifting emission of the films to greenish. 9PP allows to study the structure–property relationship of para-phenylene oligomers and polymers, especially since the optical properties of PPP depend on the molecular shape of the precursor.  相似文献   
997.
Dehydroalanine (Dha) residues are attractive noncanonical amino acids that occur naturally in ribosomally synthesised and post-translationally modified peptides (RiPPs). Dha residues are attractive targets for selective late-stage modification of these complex biomolecules. In this work, we show the selective photocatalytic modification of dehydroalanine residues in the antimicrobial peptide nisin and in the proteins small ubiquitin-like modifier (SUMO) and superfolder green fluorescent protein (sfGFP). For this purpose, a new water-soluble iridium(III) photoredox catalyst was used. The design and synthesis of this new photocatalyst, [Ir(dF(CF3)ppy)2(dNMe3bpy)]Cl3, is presented. In contrast to commonly used iridium photocatalysts, this complex is highly water soluble and allows peptides and proteins to be modified in water and aqueous solvents under physiologically relevant conditions, with short reaction times and with low reagent and catalyst loadings. This work suggests that photoredox catalysis using this newly designed catalyst is a promising strategy to modify dehydroalanine-containing natural products and thus could have great potential for novel bioconjugation strategies.  相似文献   
998.
Reactions of di-tert-butyldiphosphatetrahedrane ( 1 ) with cycloocta-1,5-diene- or anthracene-stabilised metalate anions of iron and cobalt consistently afford complexes of the rarely encountered 1,2-diphosphacyclobutadiene ligand, which have previously been very challenging synthetic targets. The subsequent reactivity of 1,2-diphosphacyclobutadiene cobaltates toward various electrophiles has also been investigated and is compared to reactions of related 1,3-diphosphacyclobutadiene complexes. The results highlight the distinct reactivity of such isomeric species, showing that the 1,2-isomers can act as precursors for previously unknown triphospholium ligands. The electronic structures of the new complexes were investigated by several methods, including NMR, EPR and Mößbauer spectroscopies as well as quantum chemical calculations.  相似文献   
999.
Cellulose - Textile filaments were fabricated from a solution obtained from carboxymethylated cellulose dissolved in aqueous NaOH solution, by wet spinning in an acid coagulation bath. Spinning is...  相似文献   
1000.
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s–3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1. On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+(H2O)n-1 and are transparent in the investigated energy range. For n=4–8, a mixture of Al+(H2O)n and HAlOH+(H2O)n-1 is present in the experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号