首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   36篇
  国内免费   23篇
化学   841篇
晶体学   4篇
力学   20篇
数学   59篇
物理学   77篇
  2024年   4篇
  2023年   7篇
  2022年   29篇
  2021年   37篇
  2020年   64篇
  2019年   55篇
  2018年   80篇
  2017年   39篇
  2016年   73篇
  2015年   54篇
  2014年   71篇
  2013年   125篇
  2012年   67篇
  2011年   73篇
  2010年   52篇
  2009年   47篇
  2008年   43篇
  2007年   29篇
  2006年   9篇
  2005年   13篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
  1986年   1篇
  1985年   3篇
  1976年   1篇
排序方式: 共有1001条查询结果,搜索用时 15 毫秒
851.
Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (γAl)/Fe3O4 and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer. Physico-chemical characterization of the nanocarriers was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). SEM analysis revealed smooth and homogeneous spherical nanoparticles. The high stability of the nanoparticles and their narrow size distribution was confirmed by DLS. The results of the loading study demonstrated that these nano-systems cause controlled, stable, and pH-sensitive release in cancerous environments with an inactive targeting mechanism. Finally, the results of MTT and flow cytometry tests indicated that this nano-system increased the rate of apoptosis induction on cancerous masses and could be an effective alternative to current treatments.  相似文献   
852.
In this paper, a novel molecularly imprinted polymer coated stir bar has been used to selectively extract naphthalene sulfonates (NSs) directly from seawater sample. 1-Naphthalene sulfonic acid (1-NS) was used as template molecule. The effects of different parameters were optimized on the extraction efficiency and the optimum conditions were established as: the absorption and desorption times were fixed, respectively, at 10 and 15 min, stirring speed was 700 rpm, pH was adjusted to 4.1, amount of NaCl was 1 mol L?1 and extraction process was performed at a temperature of 50 °C. The linear ranges were 2–250 µg L?1 for 3,6-NDS-1-OH (1-naphthol-3,6-disulfonic acid), 4–250 µg L?1 for 2-NS (2-naphthalene sulfonate) and 3–250 µg L?1 for 1-NS. The detection limits were within the range of 0.32–0.95 µg L?1. Under optimum conditions, the detection limits of the NSs were 0.84, 0.95 and 0.32 µg L?1 with the enrichment factor of 117-, 41- and 77-fold for 2-NS, 1-NS, and 6-NDS-1-OH, respectively. The repeatability of the method was satisfactory (0.53 ≤ RSD ≤6.0 %, n = 10). The method has been successfully applied for the analysis of trace amounts of three naphthalene sulfonates in seawater of Chabahar Bay.  相似文献   
853.
Diabetes mellitus (DM) is the most prevalent non‐contagious disease, which has affected a large number of people all over the world. Among all treatments known to have a positive influence in the control of DM, insulin therapy is the most common and effective one. Nowadays, various methods of insulin delivery are under investigation, which are able to reach a plausible bioavailability with ignorable side effects instead of insulin injection. This article presents a comprehensive review of the insulin therapy approach with a focus on modified methods in insulin delivery strategies and current advances in engineered insulin delivery systems.  相似文献   
854.
Adsorption of anionic dyes onto most of zeolites with net negative charge may be restricted. In this article, a natural nanoclinoptilolite was modified with Cu and the obtained nanomaterial was used as an effective adsorbent for removal of methyl red as an anionic model azo dye up to 90% in 20 min.This new adsorbent was characterized utilizing X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Also, effects of methyl red concentration, mass of sorbent and pH on the removal percent were examined. Moreover, the adsorption mechanism was investigated by plotting the Langmuir and Freundlich adsorption isotherms. The results showed that the data can be fitted with both models. The most adsorption capacity obtained from Langmuir isotherm was about 200 mg/g. Moreover, the Cu modified nanoclinoptilolite was successfully employed for adsorption of another anionic dye, bromothymol blue. The results confirmed that this new adsorbent can be effectively applied for removing of anionic dyes from waste waters.  相似文献   
855.
Journal of Radioanalytical and Nuclear Chemistry - The effect of natural gas use on indoor radon concentrations was studied in the dwelling of two cities in Cyprus using an AlphaGUARD radon...  相似文献   
856.
In this work, a water-soluble polymer, polyethylenimine (PEI) was used for the simultaneous separation and preconcentration of trace Cu and Mn prior to their determination by flame atomic absorption spectrometry. For this purpose, the sample and the PEI solution were mixed and the metal-bound polymer was precipitated by adding acetone. The precipitate was separated and dissolved in a minimum amounts of water and aspirated into a flame AAS. By increasing the ratio of the volumes of sample to water used in dissolving the precipitate, the analyte elements were concentrated as needed. The sorption is quantitative in the pH ≥6. Detection limits were 5.2 μg/L for Cu and 5.4 μg/L for Mn. This method is simple, fast and precise.  相似文献   
857.
Research on Chemical Intermediates - Graphite/TiO2 nanocomposite additive was used to make a photocatalytic, hydrophilic, and antibacterial polyacrylic based coating. Various amounts of...  相似文献   
858.
Research on Chemical Intermediates - In the current study, a new catalytic system based on Fe3O4 nanoparticles immobilized on zeolite-SO3H (Fe3O4@zeolite-SO3H) is introduced. In the first stage,...  相似文献   
859.
In this article, we report on the chemical oxidative polymerization of 3-methylthiophene (3MTh) in a concentrated TiO2/CHCl3 homogeneous suspension with an oxidant/monomer mole ratio of 3 at room temperature. According to the scanning electron microscopy images, in this condition, poly(3-methylthiophene) (P3MTh) was prepared with fibrous morphology decorated by nano-dimensional TiO2 particles. P3MTh/TiO2 was also characterized by Fourier transform infrared spectroscopy and X-ray diffraction techniques. It was found that no aggregation of nanoparticles occurred during the polymerization process. In addition, the thermal stability of P3MTh/TiO2 nanocomposite was investigated by thermogravimetric analysis and compared with that of an analogously prepared neat P3MTh. The thermal degradation of P3MTh in the temperature range of 300–550°C decreases significantly due to the presence of the TiO2 nanoparticles in the polymer composite.  相似文献   
860.
A simple and eco‐friendly green protocol was used for synthesis of pyrazolopyranopyrimidines via four‐component reaction of hydrazine hydrate, ethyl acetoacetate, barbituric acid or dimethyl barbituric acid, and aromatic aldehydes under thermal and solvent‐free conditions in the presence of magnetic nanoparticle supported silica bonded n‐propyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane chloride (MNPs@DABCO+Cl?) as an efficient, recyclable heterogeneous catalyst. MNPs@DABCO+Cl? also catalyzed the synthesis of 1,6‐diamino‐2‐oxo‐1,2,3,4‐tetrahydropyridine‐3,5‐dicarbonitrile derivatives by four‐component reaction of hydrazine hydrate, malononitrile, ethyl cyanoacetate and ketones under thermal and solvent‐free conditions at 80 °C. These methods are practical and offer many advantages, such as high yields, short reaction times, and simple work‐up.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号