全文获取类型
收费全文 | 508篇 |
免费 | 19篇 |
国内免费 | 7篇 |
专业分类
化学 | 328篇 |
晶体学 | 5篇 |
力学 | 19篇 |
综合类 | 2篇 |
数学 | 64篇 |
物理学 | 116篇 |
出版年
2023年 | 5篇 |
2022年 | 32篇 |
2021年 | 32篇 |
2020年 | 14篇 |
2019年 | 21篇 |
2018年 | 33篇 |
2017年 | 28篇 |
2016年 | 28篇 |
2015年 | 19篇 |
2014年 | 23篇 |
2013年 | 41篇 |
2012年 | 37篇 |
2011年 | 34篇 |
2010年 | 26篇 |
2009年 | 18篇 |
2008年 | 26篇 |
2007年 | 21篇 |
2006年 | 14篇 |
2005年 | 13篇 |
2004年 | 7篇 |
2003年 | 11篇 |
2002年 | 10篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 2篇 |
排序方式: 共有534条查询结果,搜索用时 15 毫秒
521.
Rohana Adnan Nur Ariesma Razana Ismail Abdul Rahman Muhammad Akhyar Farrukh 《中国化学会会志》2010,57(2):222-229
A systematic study on the preparation of SnO2 nanoparticles using a simple sol‐gel technique has been conducted by varying reaction parameters such as concentration of ammonia, ammonia feed rate and reaction temperature. The tin oxide obtained was characterized by using FTIR, BET, XRD and TEM. Particles size was obtained in the range of 4 to 5.6 nm and the surface area was found to be between 76 to 114 m2 g?1 depending on the reaction parameters. Meanwhile, the catalytic activity of SnO2 was first time investigated for the hydrogenation reaction of styrene using ethanol as the solvent at 70 °C and 1 atmospheric pressure. It is found that SnO2 acts as a good catalyst in this hydrogenation process. The product conversions in the presence of catalysts prepared at different conditions were between 37 to 72%. 相似文献
522.
Are Copper(I) Carbenes Capable Intermediates for Cyclopropanations? The Case for Ylide Intermediates 下载免费PDF全文
Dr. Jamal T. Aldajaei Dr. James R. Keeffe Christopher A. Swift Dr. Scott Gronert 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(36):12702-12708
A novel approach is used to synthesize a stable, ligated copper(I) carbene in the gas phase that is capable of typical metal carbenoid chemistry. However, it is shown that copper(I) carbenes generally undergo rapid unimolecular rearrangements including insertions into copper‐ligand bonds and Wolff rearrangements. The results indicate that most copper(I) carbenes are inherently unstable and would not be viable intermediates in condensed‐phase applications; an alternative intermediate that is less prone to rearrangements is required. Computational data suggest that ylides formed by the complexation of the carbene with solvent or other weak nucleophiles are viable intermediates in the reactions of copper(I) carbenes. 相似文献
523.
524.
Radial flow reactors (RFR) are used in thermal swing adsorption (TSA) processes for gas prepurification. The aim of this work is to show the validity of the discrete element method (DEM) to simulate the effect of thermal expansion and contraction cycles occurring in such processes on the packed bed of RFR reactors. Both mono-layered and bi-layered packed beds of adsorbents are investigated. A DEM-based model of a full-scale size unit was developed, the parameters of which were calibrated by means of particle-scale experimental measurements and simple auxiliary DEM simulations. The DEM-based model used is isothermal and the thermal expansion and contraction phenomena are modelled through the displacement of the inner and outer walls of the computational domain. First, the accuracy of this model is assessed using analytical values of the static wall pressure (i.e. with no wall motion) as well as experimental measurements of the dynamic wall pressure (i.e. with wall motion) of a bi-layered bed. Next, simulation results for a few process cycles in the case of a bi-layered packed bed indicates that little mixing occurs at the interface between the two types of adsorbents. To our knowledge, this is the first time that simulation is used to investigate the behavior of the packed bed of a RFR in a TSA process. The results obtained with the proposed model show that the DEM is a valuable tool for the investigation of such slow dynamical processes, provided a careful calibration is done. 相似文献
525.
526.
Poly(ethylene glycol) dicationic ionic liquid‐based MnCl42? was prepared by nucleophilic substitution of poly(ethylene glycol) dichloride with methylimidazole followed by reaction with MnCl2. The structural properties of the catalyst were systematically investigated using Fourier transform infrared, UV–visible and Raman spectra and thermogravimetric analysis. The application of this catalyst allows the synthesis of a variety of benzyl thiocyanates and azides in high yield under reflux conditions in water. The main advantages of this method are its easy nature, rapidity, environmental benignity and high yields. 相似文献
527.
We have described the primary studies on the conductivity and molecular weight of polyaniline in an electric field as it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in an acidic solution, with aqueous, organic and emulsion conditions at different times. Next, we measured mass and conductivity and obtained the best time of polymerizations. Then, we repeated these reactions under different electrical fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-visible spectroscopy and electrical conductivity. Polyanilines with high molecular weight are synthesized under electric field M w = (5.2–6.8) × 105, with M w/M n = 2.0–2.5. The UV-visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP) show a smeared polaron peak shifted into the visible. Electrical conductivity of polyaniline has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP is higher than 500 S/cm under (10 kV/cm2 of potential) electric field and shows an enhanced resistance to ageing. Next, we carried chemical polymerization at the best electric field at different times. Finally, the best time and amount of electric field were determined. Polymers synthesized under an electric field probably have better physical properties regarding the existence of less branching and high electric conductivity. 相似文献
528.
The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted contributions of higher order vibronic terms. The emrep amplitudes of these complexes have their maxima at about 1500 cm(-1) in frozen solution, and Lambdax(max) decreases systematically by approximately 2-fold as Ef decreases from 17,220 for [Ru(bpy)3]2+ to 12,040 cm(-1) for [Ru(NH3)4bpy]2+ through the series of complexes. Corrections for higher order contributions and bandwidth differences based on the modeling with rR parameters indicate that the variations in Lambdax(max) imply somewhat larger decreases in first-order bpy vibrational reorganizational energies. The large attenuation of vibrational reorganizational energies of the [Ru(Am)6-2n(bpy)n]2+ complexes contrasts with the apparent similarity of reorganizational energy amplitudes for the absorption and emission of [Ru(NH3)4bpy]2+. These observations are consistent with increasing and very substantial excited-state/ground-state configurational mixing and decreasing excited-state distortion as Ef decreases, but more severe attenuation for singlet/singlet than triplet/singlet mixing (alphage > alphaeg for the configurational mixing coefficients at the ground-state and excited-state potential energy minima, respectively); it is inferred that 0.18 > or = alphage2 > or = 0.09 for [Ru(bpy)3]2+ and 0.37 > or = alphage2 > or = 0.18 for [Ru(NH3)4bpy]2+ in DMSO/water glasses, where the ranges are based on models that there is or is not a spin restriction on configurational mixing (alphage > alphaeg and alphage = alphaeg), respectively, for these complexes. 相似文献
529.
Jasmeet Kaur Md. Khalid Anwer Ali Sartaj Bibhu Prasad Panda Abuzer Ali Ameeduzzafar Zafar Vinay Kumar Sadaf Jamal Gilani Chandra Kala Mohamad Taleuzzaman 《Molecules (Basel, Switzerland)》2022,27(4)
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations. 相似文献
530.
Prof. Dr. Mohammed M. Rahman M. M. Alam Prof. Dr. Abdullah M. Asiri Prof. Dr. Jamal Uddin 《化学:亚洲杂志》2021,16(13):1820-1831
In this investigation, a melamine electrochemical sensor has been developed by using wet-chemically synthesized low-dimensional aggregated nanoparticles (NPs) of ZnO-doped Co3O4 as sensing substrate that were decorated onto flat glassy carbon electrode (GCE). The characterization of NPs such as UV-Vis, FTIR, XRD, XPS, EDS, and FESEM was done for detailed investigations in optical, functional, structural, elemental, and morphological analyses. The ZnO-doped Co3O4 NPs decorated GCE was used as a sensing probe to analyze the target chemical melamine in a phosphate buffer at pH 5.7 by applying differential pulse voltammetry (DPV). It exhibited good performances in terms of sensor analytical parameters such as large linear dynamic range (LDR; 0.15–1.35 mM) of melamine detection, high sensitivity (80.6 μA mM−1 cm−2), low limit of detection (LOD; 0.118±0.005 mM), low limit of quantification (LOQ; 0.393 mM), and fast response time (30 s). Besides this, the good reproducibility (in several hours) and repeatability were investigated under identical conditions. Moreover, it was implemented to measure the long-time stability, electron mobility, less charge-transfer resistance, and analyzed diffusion-controlled process for the oxidation reaction of the NPs assembled working GCE electrode, which showed outstanding chemical sensor performances. For validation, real environmental samples were collected from various water sources and investigated successfully with regard to the reliability of the selective melamine detection with prepared NPs coated sensor probe. Therefore, this approach might be introduced as an alternative route in the sensor technology to detect selectively unsafe chemicals by an electrochemical method with nanostructure-doped materials for the safety of environmental, ecological, healthcare fields in a broad scale. 相似文献