首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   1篇
化学   73篇
晶体学   1篇
力学   9篇
数学   2篇
物理学   60篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1978年   2篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1931年   1篇
  1927年   1篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
61.
Early warning of the presence of chemical agent aerosols is an important component in the defense against such agents. A Raman spectrometer has been constructed for the purpose of detecting and identifying chemical aerosols. We report the detection and identification of a low‐concentration chemical aerosol in atmospheric air using 532‐nm continuous wave laser Raman scattering. We have demonstrated the Raman scattering detection and identification of an aerosol of isovanillin of mass concentration of 1.8 ng/cm3 with a signal‐to‐noise ratio of about 19 in 30 s for the 1116‐cm−1 mode with a Raman cross section of 3.3 × 10−28 cm2 using 8‐W double‐pass laser power. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
62.
On damage diagnosis for a wind turbine blade using pattern recognition   总被引:1,自引:0,他引:1  
With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.  相似文献   
63.
Coherent anti-Stokes Raman scattering (CARS) and normal anti-Stokes Raman scattering (NARS) have been measured in (001) GaP at room temperature due to the 403 cm−1 LO phonons using a continuous wave (CW) 785.0 nm fixed-wavelength pump laser and a CW Stokes laser tunable in the 800-830 nm wavelength range. CARS measurements are normally made using pulsed lasers. The use of CW diode lasers allows a more accurate comparison between the measured and calculated values of the CARS signal. The pump and Stokes laser beams were linearly polarized perpendicular to each other, same as the pump and normal Stokes/anti-Stokes scattered light for the GaP sample used in this work. The pump and Stokes laser powers incident upon the GaP sample, located in the focal plane of a 20 mm effective focal length lens, were <20 and 50 mW, respectively. The diameter of the laser beams in the focal plane of the focusing lens was determined to 40±5 μm. The pump and Stokes laser beam intensities incident upon the 0.3 mm thick GaP sample were <2 and 5 kW cm2, respectively. The powers of the CARS and NARS signals were measured using a Raman spectrometer. The signal output of the Raman spectrometer was calibrated using the pump laser and several neutral density filters. The Raman linewidth (full-width at half-maximum) of the LO phonons was determined to be 0.95±0.05 cm−1, using the variation of the CARS signal with the wavelength of the Stokes laser. The measured powers of the CARS and NARS signals are about a factor of 5 and 1.5, respectively, smaller than those calculated from the corresponding theoretical expressions.  相似文献   
64.
65.
The scaling behavior, and to some extent the magnitude, of the ratio γπ of large p direct photon and pion inclusive production cross sections are shown to provide an excellent means of determining the fundamental mechanism of large p scattering.  相似文献   
66.
A C3-symmetric phosphine with indolyl substituents has been synthesized that demonstrates the capability to bind anions through the indole NH sites and coordinate metal centres through the phosphorus centre.  相似文献   
67.
A dilute solution of water in a hydrophobic solvent, such as carbon tetrachloride (CCl4), presents an opportunity to study the rotational properties of water without the complicating effects of hydrogen bonds. We report here the results of theoretical, experimental, and semiempirical studies of a 0.03 mole percent solution of water in CCl4. It is shown that for this solution there are negligible water-water interactions or water-CCl4 interactions; theoretical and experimental values for proton NMR chemical shifts (deltaH) are used to confirm the minimal interactions between water and the CCl4. Calculated ab initio values and semiempirical values for oxygen-17 and deuterium quadrupole coupling constants (chi) of water/CCl4 clusters are reported. Experimental values for the 17O, 2H, and 1H NMR spin-lattice relaxation times, T1, of 0.03 mole percent water in dilute CCl4 solution at 291 K are 94+/-3 ms, 7.0+/-0.2 s, and 12.6+/-0.4 s, respectively. These T1 values for bulk water are also referenced. "Experimental" values for the quadrupole coupling constants and relaxation times are used to obtain accurate, experimental values for the rotational correlation times for two orthogonal vectors in the water molecule. The average correlation time, tauc, for the position vector of 17O (orthogonal to the plane of the molecule) in monomer water, H2(17)O, is 91 fs. The average value for the deuterium correlation time for the deuterium vector in 2H2O is 104 fs; this vector is along the OD bond. These values indicate that the motion of monomer water in CCl4 is anisotropic. At 291 K, the oxygen rotational correlation time in bulk 2H2(17)O is 2.4 ps, the deuterium rotational correlation time in the same molecule is 3.25 ps. (Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123, 8047.) These values are a factor of about 20 longer than the tauc value for dilute monomer water in CCl4.  相似文献   
68.
The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C(+) and NH(3). The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH(3)](+) precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis.  相似文献   
69.
A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing a means to supply power to the sensor nodes in an efficient manner. In this paper, we explore possible solutions to this challenge by using a mobile-host based wireless energy transmission system to provide both power and data interrogation commands to sensor nodes. The mobile host features the capability of wirelessly transmitting energy to sensor nodes on an as-needed basis. In addition, it serves as a central data repository and processing center for the data collected from the sensing network. The wirelessly transmitted microwave energy is captured by a receiving antenna, transformed into DC power by a rectifying circuit, and stored in a storage medium to provide the required energy to the sensor node. The application of wireless energy transmission is targeted toward SHM sensor nodes that have been recently developed by the authors, which can be used to collect peak mechanical displacements or piezoelectric impedance measurements. This paper will describe considerations needed to design such energy transmission systems, experimental procedure and results, method of increasing the efficiency, energy conditioning circuits and storage medium, and target applications. Experimental results from a field test on the Alamosa Canyon Bridge in southern New Mexico will also be presented.  相似文献   
70.
Promising ongoing research on “smart” sensing technologies is offering low-cost alternatives and new opportunities for large-scale SHM. Networks of sensors with wireless communication and computational capabilities can be used to increase the spatial resolution of data collection while providing a distributed computing framework for implementing structural health monitoring algorithms. Robust and practical SHM methodologies being able to rapidly and accurately detect and assess changes in the monitored system are required to be at the core of these “smart” structures. A data-driven non-parametric identification technique is used to implement a robust change detection methodology for uncertain MDOF chain-like systems that can be implemented in densely distributed smart-sensor networks. Experimental data from a test-bed structure tested at Los Alamos National Laboratory are used to evaluate the effectiveness and reliability of the proposed SHM methodology. The results of this study showed that the proposed approach was able, in a rigorous statistical framework, to confidently detect the presence of structural changes, accurately locate the structural section where the change occurred, and provide an accurate estimate of the actual level of “change”. Additionally, a full-order finite element model of the test structure, as well as the results from the experimental modal identification using the ERA algorithm were employed to validate the results obtained in this change-detection study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号