全文获取类型
收费全文 | 90548篇 |
免费 | 16364篇 |
国内免费 | 9189篇 |
专业分类
化学 | 61581篇 |
晶体学 | 915篇 |
力学 | 5746篇 |
综合类 | 512篇 |
数学 | 10088篇 |
物理学 | 37259篇 |
出版年
2024年 | 344篇 |
2023年 | 2043篇 |
2022年 | 3293篇 |
2021年 | 3559篇 |
2020年 | 3927篇 |
2019年 | 3509篇 |
2018年 | 3216篇 |
2017年 | 2866篇 |
2016年 | 4582篇 |
2015年 | 4362篇 |
2014年 | 5320篇 |
2013年 | 6764篇 |
2012年 | 8209篇 |
2011年 | 8397篇 |
2010年 | 5546篇 |
2009年 | 5380篇 |
2008年 | 5780篇 |
2007年 | 5063篇 |
2006年 | 4761篇 |
2005年 | 3819篇 |
2004年 | 2940篇 |
2003年 | 2294篇 |
2002年 | 2107篇 |
2001年 | 1815篇 |
2000年 | 1604篇 |
1999年 | 1839篇 |
1998年 | 1591篇 |
1997年 | 1576篇 |
1996年 | 1563篇 |
1995年 | 1322篇 |
1994年 | 1150篇 |
1993年 | 996篇 |
1992年 | 858篇 |
1991年 | 783篇 |
1990年 | 643篇 |
1989年 | 501篇 |
1988年 | 370篇 |
1987年 | 308篇 |
1986年 | 323篇 |
1985年 | 261篇 |
1984年 | 151篇 |
1983年 | 117篇 |
1982年 | 100篇 |
1981年 | 57篇 |
1980年 | 42篇 |
1979年 | 15篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1957年 | 31篇 |
1922年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
JunBo Zhang XueBin Wang ChunJun Tian 《Journal of Radioanalytical and Nuclear Chemistry》2004,262(2):505-507
The preparation of the bis(N-propyl dithiocarbamato) nitrido technetium-99m complex 99mTcN(PDTC)2 (PDTC: N-propyl dithiocarbamato) was carried out as a freeze-dried formulation, through a simple procedure involving the
initial of 99mTcO4- with succinic dihydrazide in the presence of stannous chloride as reducing agent and propylenediamine tetraacetic acid (PDTA)
as complexant, followed by the addition of the ligand sodium salt of N-propyl dithiocarbamate to afford the final product.
The radiochemical purity of the complex was over 90%, as measured by thin layer chromatography. No decomposition of the complex
at room temperature was observed over a period of 12 hours. Its partition coefficient indicated that it was a good lipophilic
complex. Biodistribution in mice showed that the complex accumulated in the brain with high uptake. The brain uptake (ID%/g)
was 5.07 and the brain/blood ratio 1.34 at 5-minute post-injection. This suggested a potential usefulness of the complex as
a brain perfusion imaging agent.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
182.
Lizeng PengHuawei Liu Tao ZhangFengzhi Zhang Tiansheng MeiYi Li Yulin Li 《Tetrahedron letters》2003,44(27):5107-5108
A stereoselective synthesis of brassinolide, which involves construction of the side chain by a highly stereoselective aldol reaction between 20S-6β-methoxy-3α,5-cyclo-5α-pregnane-20-carboxaldehyde 2 and ketone 3 or 4 catalyzed by l-proline, is described. 相似文献
183.
Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode 总被引:6,自引:0,他引:6
The self-assembled electrode with the homocysteine monolayer (Hcy/Au) has been characterized by infrared spectroscopy and ac impedance spectroscopy in electrolyte. The Hcy/Au electrode is demonstrated to promote the electrochemical response of epinephrine (E) by cyclic voltammetry. A pair of well-defined redox waves was obtained and the calculated standard rate constant (ks) is 2.1×10−2 cm s−1 at the self-assembled electrode. The reduction peak of E can be used to determine the concentration of E in presence of ascorbic acid (AA) owing to the Hcy/Au also promoting the electrochemical oxidation of AA. 相似文献
184.
Zhang X 《Journal of colloid and interface science》1999,212(1):107-122
This paper presents a numerical study of the dynamics of a viscous liquid drop that is being formed directly at the tip of a vertical tube into ambient air. A model is developed to predict the evolution of the drop shape and its breakup based on RIPPLE, which is a solution algorithm for computing transient, two-dimensional, incompressible fluid flow with surface tension on free surfaces of general topology (D. B. Kothe and R. C. Mjolsness, AIAA J. 30, 2694 (1992)). The full Navier-Stokes system is solved by using finite-difference formulation on a Eulerian mesh. The mesh is fixed in space, with the flow and surface moving through it to ensure accurate calculations of complex free surface flows and topology, including surface breakup and coalescence. The novel feature of the numerical algorithm is the use of a Eulerian volume-tracking approach which allows the calculations to pass the breaking point during formation of a drop continuously without interruption or numerical modification and, therefore, to explore the features of generation of satellite droplets. The effects of physical and geometric parameters on the nonlinear dynamics of drop growth and breakup are investigated. The focus here is on drop breakup and subsequent formation of satellite droplets. The effects of finite inertial, capillary, viscous, and gravitational forces are all accounted for to classify different formation dynamics and to elucidate features of satellite droplet generation. The numerical predictions are compared with experimental measurements for water drops, and the results show good agreement. Copyright 1999 Academic Press. 相似文献
185.
Qian-Feng Zhang Yu-Jie Liu Richard D. Adams Alexander Rothenberger Dieter Fenske Wa-Hung Leung 《Journal of Cluster Science》2006,17(3):445-455
Treatment of tetracopper(I)-phosphonitocavitand [1·Cu4(μ-Cl)4(μ4-Cl)] (2) (1 = tetraphosphonitocavitand [rccc-2,8,14,20-tetrakis-(iso-butyl)-phosphonitocavitand (C44H48O8P4Ph4)]) with PhSeSiMe3 in THF at low temperature afforded a novel polyanionic cluster [pyH]6[(CuCl)9(μ3-SePh)5(μ4-SePh)] (4) as a major product along with a new tetracopper(I)-phosphonitocavitand (3) with a centered μ3-Cl. Molecular structure of anionic cluster in 4 consists of six PhSe− bridging ligands containing five μ3-SePh and one exceptional μ4-SePh bridging nine copper atoms, of which eight copper atoms have trigonal coordination geometry and the other has distorted
tetrahedral geometry.
Dedicated to Professor Han-Qin Liu on the occasion of his 70th birthday. 相似文献
186.
Yechen Hu Zhongcheng Wang Liang Liu Jianhua Zhu Dongxue Zhang Mengying Xu Yuanyuan Zhang Feifei Xu Yun Chen 《Chemical science》2021,12(23):7993
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering “what”, “where”, “how many” and “whose” chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.An overview of MS-based chemical mapping and profiling, indicating its contributions to the molecular understanding of diseases in precision medicine by answering "what", "where", "how many" and "whose” chemicals underlying clinical phenotypes. 相似文献
187.
The direct reactions of (C5H5)2LnCl with LiN=C(NMe2)2 proceeded at room temperature in THF under pure nitrogen to yield the lanthanocene guanidinate complexes [(C5H5)2Ln(mu-eta1:eta2-N=C(NMe2)2)]2 (Ln = Gd (1), Er (2)). Treatment of phenyl isocyanate with complexes 1 and 2 results in monoinsertion of phenyl isocyanate into the Ln-N(mu-Gua) bond to yield the corresponding insertion products [(C5H5)2Ln(mu-eta1:eta2-OC(N=C(NMe2)2)NPh)]2 (Ln = Gd (3), Er (4)), presenting the first example of unsaturated organic small molecule insertion into the metal-guanidinate ligand bond. Further investigations indicate that N,N'-diisopropylcarbodiimide does not react with complexes 1 and 2 under the same conditions; however, it readily inserts into the lithium-guanidinate ligand bond of LiN=C(NMe2)2. As a synthon of the insertion product Li[(iPrN)2C(N=C(NMe2)2)], its reaction with (C5H5)2LnCl gives the novel organolanthanide complexes containing the guanidinoacetamidinate ligand, (C5H5)2Ln[(iPrN)2C(N=C(NMe2)2)] (Ln = Yb (5), Er (6), Dy (7)). All complexes were characterized by elemental analysis and spectroscopic properties. The structures of complexes 1, 3, 5 and 7 were determined through X-ray single-crystal diffraction analysis. 相似文献
188.
Comparative studies on the voltammetric reduction of the alpha and gamma isomers of Dawson [S(2)W(18)O(62)](4)(-) and alpha, beta, and gamma forms of Keggin [SiW(12)O(40)](4)(-) polyoxometalate anions have been undertaken. For the six reversible one-electron [S(2)W(18)O(62)](4)(-)(/5)(-)(/6)(-)(/7)(-)(/8)(-)(/9)(-)(/10)(-) processes in acetonitrile, reversible potentials (E(0)(')) were found to be independent of isomeric form within experimental error (+/-5 mV). However, because both the alpha and gamma* isomers of [Bu(4)N](4)[S(2)W(18)O(62)] are insoluble in water, solid-state voltammetric studies with microcrystals adhered to electrode surfaces in contact with aqueous Et(4)NCl and Bu(4)NCl electrolyte media were also possible. Although no isomeric distinction was again detected in the solid-state studies, it was found that reduction of adhered solid by four or more electron equivalents led to rapid dissolution. When Et(4)NCl was the electrolyte, this dissolution process coupled with potential cycling experiments enabled conventional solution-phase data to be obtained in water for the analogous six one-electron reduction steps previously detected in acetonitrile. A strong medium effect attributed to Lewis acidity effects was apparent upon comparison with E(0)(') data obtained in water and acetonitrile. In contrast, with the [SiW(12)O(40)](4)(-) system, E(0)(') values for the [SiW(12)O(40)](4)(-)(/5)(-)(/6)(-)(/7)(-) processes in acetonitrile exhibited a larger (about 70 mV) dependence on isomeric form, and the isomerization step, [gamma-SiW(12)O(40)](6)(-)--> [alpha-SiW(12)O(40)](6)(-), was detected on the voltammetric time scale. The influence of isomeric form on reversible potential data is considered in terms of structural and charge density differences exhibited in the [S(2)W(18)O(62)](4)(-) and [SiW(12)O(40)](4)(-) systems studied in this paper and published data available on the alpha, beta, gamma, and gamma isomers of [As(2)W(18)O(62)](6)(-) and [P(2)W(18)O(62)](6)(-) Dawson anions and Keggin systems. 相似文献
189.
Chen YW Liu YC Lu SX Xu CS Shao CL Wang C Zhang JY Lu YM Shen DZ Fan XW 《The Journal of chemical physics》2005,123(13):134701
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples. 相似文献
190.