首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   52篇
  国内免费   2篇
化学   553篇
晶体学   1篇
力学   24篇
数学   80篇
物理学   115篇
  2023年   9篇
  2022年   9篇
  2021年   11篇
  2020年   20篇
  2019年   13篇
  2018年   23篇
  2017年   5篇
  2016年   38篇
  2015年   22篇
  2014年   28篇
  2013年   35篇
  2012年   60篇
  2011年   80篇
  2010年   39篇
  2009年   48篇
  2008年   64篇
  2007年   69篇
  2006年   55篇
  2005年   52篇
  2004年   24篇
  2003年   26篇
  2002年   23篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1981年   1篇
排序方式: 共有773条查询结果,搜索用时 0 毫秒
61.
This study evaluates the impact of the extension of the π‐conjugated system of pyridiniums on their various properties. The molecular scaffold of aryl‐substituted expanded pyridiniums (referred to as branched species) can be photochemically bis‐cyclized into the corresponding fused polycyclic derivatives (referred to as pericondensed species). The representative 1,2,4,6‐tetraphenylpyridinium ( 1H ) and 1,2,3,5,6‐pentaphenyl‐4‐(p‐tolyl)pyridinium ( 2Me ) tetra‐ and hexa‐branched pyridiniums are herein compared with their corresponding pericondensed derivatives, the fully fused 9‐phenylbenzo[1,2]quinolizino[3,4,5,6‐def]phenanthridinium ( 1H f ) and the hitherto unknown hemifused 9‐methyl‐1,2,3‐triphenylbenzo[h]phenanthro[9,10,1‐def]isoquinolinium ( 2Me f ). Combined solid‐state X‐ray crystallography and solution NMR experiments showed that stacking interactions are barely efficient when the pericondensed pyridiniums are not appropriately substituted. The electrochemical study revealed that the first reduction process of all the expanded pyridiniums occurs at around ?1 V vs. SCE, which indicates that the lowest unoccupied molecular orbital (LUMO) remains essentially localized on the pyridinium core regardless of pericondensation. In contrast, the electronic and photophysical properties are significantly affected on going from branched to pericondensed pyridiniums. Typically, the number of absorption bands increases with extended activity towards the visible region (down to ca. 450 nm in MeCN), whereas emission quantum yields are increased by three orders of magnitude (at ca. 0.25 on average). A relationship is established between the observed differential impact of the pericondensation and the importance of the localized LUMO on the properties considered: predominant for the first reduction process compared with secondary for the optical and photophysical properties.  相似文献   
62.
On the occasion of the 60th birthday of Professor Vladimir Sergeevich Anashin, we present a review of his significant scientific research and related activities.  相似文献   
63.
64.
65.
Steel multi-wire cables are widely employed in civil engineering. They are usually made of a straight core and one layer of helical wires. In order to detect material degradation, nondestructive evaluation methods based on ultrasonics are one of the most promising techniques. However, their use is complicated by the lack of accurate cable models. As a first step, the goal of this paper is to propose a numerical method for the study of elastic guided waves inside a single helical wire. A finite element (FE) technique is used based on the theory of wave propagation inside periodic structures. This method avoids the tedious writing of equilibrium equations in a curvilinear coordinate system yielding translational invariance along the helix centerline. Besides, no specific programming is needed inside a conventional FE code because it can be implemented as a postprocessing step of stiffness, mass and damping matrices. The convergence and accuracy of the proposed method are assessed by comparing FE results with Pochhammer-Chree solutions for the infinite isotropic cylinder. Dispersion curves for a typical helical waveguide are then obtained. In the low-frequency range, results are validated with a helical Timoshenko beam model. Some significant differences with the cylinder are observed.  相似文献   
66.
We have successfully developed a high-energy, high-repetition rate Ti:sapphire laser system that delivers 33 J before compression at 0.1 Hz. The final booster amplifier is based on a 100 mm diameter Ti:sapphire crystal pumped with 72 J of energy in six beams delivered by three frequency-doubled high-repetition rate Nd:glass lasers. This system is, to the best of our knowledge, the first demonstrated petawatt class laser system running at a high repetition rate.  相似文献   
67.
68.
Physico-chemical methods to sort single-walled carbon nanotubes (SWNTs) by chiral index are presently lacking but are required for in-depth experimental analysis and also for potential future applications of specific species. Here we report the unexpected selectivity of poly(N-decyl-2,7-carbazole) to almost exclusively disperse semiconducting SWNTs with differences of their chiral indices (n - m) ≥ 2 in toluene. The observed selectivity complements perfectly the dispersing features of the fluorene analogue poly(9,9-dialkyl-2,7-fluorene), which disperses semiconducting SWNTs with (n - m) ≤ 2 in toluene. The dispersed samples are further purified by density gradient centrifugation and analyzed by photoluminescence excitation spectroscopy. All-atom molecular modeling with decamer model compounds of the polymers and (10,2) and (7,6) SWNTs suggests differences in the π-π stacking interaction as origin of the selectivity. We observe energetically favored complexes between the (10,2) SWNT and the carbazole decamer and between the (7,6) SWNT and the fluorene decamer, respectively. These findings demonstrate that subtle structural changes of polymers lead to selective solvation of different families of carbon nanotubes. Furthermore, chemical screening of closely related polymers may pave the way toward simple, low-cost, and index-specific isolation of SWNTs.  相似文献   
69.
The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.  相似文献   
70.
The diketone 2-fluoro-2-(trifluoromethyl)-1-phenylhexane-1,5-dione 3 was synthesized by a Mukaiyama Michael type reaction from the corresponding tetrafluoroenol silyl ether prepared from pentafluoropropiophenone. This diketone was treated under basic conditions and was converted, depending on the stoichiometry of the base, into the surprisingly stable ketol 4-fluoro-4-(trifluoromethyl)-3-hydroxy-3-phenylcyclohexanone 4 as a single diastereomer (catalytic KOH) or to the biphenylol 6-(trifluoromethyl)biphenyl-3-ol (excess KOH, THF) 5. Solvolysis of the trifluoromethyl group (anionic activation) occurred using excess KOH in alcohol. The corresponding cyclohexenone derivative 7, the usual product of Robinson annulation, might be prepared in good yield via mesylation of the ketol. Thus various unprecedented fluorinated cyclohexane and aromatic derivatives were achieved in a few steps from the commercially available pentafluoropropiophenone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号