首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25537篇
  免费   810篇
  国内免费   141篇
化学   16983篇
晶体学   268篇
力学   749篇
数学   2338篇
物理学   6150篇
  2023年   165篇
  2022年   456篇
  2021年   611篇
  2020年   462篇
  2019年   488篇
  2018年   418篇
  2017年   392篇
  2016年   748篇
  2015年   649篇
  2014年   888篇
  2013年   1515篇
  2012年   1870篇
  2011年   2095篇
  2010年   1312篇
  2009年   1153篇
  2008年   1750篇
  2007年   1505篇
  2006年   1526篇
  2005年   1311篇
  2004年   1161篇
  2003年   958篇
  2002年   901篇
  2001年   548篇
  2000年   500篇
  1999年   345篇
  1998年   222篇
  1997年   215篇
  1996年   281篇
  1995年   194篇
  1994年   208篇
  1993年   209篇
  1992年   158篇
  1991年   135篇
  1990年   134篇
  1989年   101篇
  1988年   72篇
  1987年   74篇
  1986年   52篇
  1985年   74篇
  1984年   51篇
  1983年   42篇
  1982年   66篇
  1981年   62篇
  1979年   46篇
  1978年   45篇
  1977年   35篇
  1976年   42篇
  1975年   37篇
  1974年   36篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
993.
To address tremendous needs for developing efficiently heat dissipating materials with lightweights, a series of liquid crystalline epoxy resins (LCEs) are designed and synthesized as thermally conductive matrix. All prepared LCEs possess epoxies at the molecular side positions and cyanobiphenyl mesogenic end groups. Based on several experimental results such as differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction, it is found that the LCEs exhibited liquid crystalline mesophases. When LCE is cured with a diamine crosslinker, the cured LCE maintains the oriented LC domain formed in the uncured state, ascribing to a presence of dipole–diploe and π–π interactions between cyanobiphenyl mesogenic end groups. Due to the anisotropic molecular orientation, the cured LCE exhibits a high thermal conductivity of 0.46 W m?1 K?1, which is higher than those of commercially available crystalline or amorphous epoxy resins. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 708–715  相似文献   
994.
Sulfonic acid based mesostructures (SAMs) have been developed in recent years and have important catalytic applications. The primary applications of these materials are in various organic synthesis reactions, such as multicomponent reactions, carbon–carbon bond couplings, protection reactions, and Fries and Beckman rearrangements. This review aims to provide an overview of the recent developments in the field of SAMs with a particular emphasis on the reaction scope and advantages of heterogeneous solid acid catalysts.  相似文献   
995.
Oxo-bridged trimeric chromium acetate clusters [Cr3O(OOCCH3)6(H2O)3]NO3 have been encapsulated for the first time in the mesoporous cages of the chromium terephthalate MIL-101(Cr). The isolated clusters in MIL-101(Cr) have increased affinity towards propylene compared to propane, due to generation of a new kind of pocket-based propylene-binding site, as supported by DFT calculations.  相似文献   
996.
Toward the goal of smart sensor systems for wearable electronics, polymer microfiber‐based free‐standing sensors benefit from excellent flexibility, decent ductility, and easy wearability in comparison with thin‐film‐based sensing devices. Herein, we report a hydrophobic and conducting single‐strand microfiber‐based liquid‐phase chemical sensor consisting of polyurethane (PU), tin oxide (SnO2), and carbon nanotube (CNT) composites with applying a (1H,1H,2H,2H‐heptadecafluorodec‐1‐yl) phosphonic acid (HDF‐PA)‐based self‐assembled monolayer. The free‐standing HDF‐PA‐treated PU–SnO2–CNT composite microfiber showing selective filtering properties with the repellency of water and the penetration of an organic solvent is electrically and mechanically characterized. Finally, the single‐strand HDF‐PA‐treated PU–SnO2–CNT composite microfiber‐based chemical sensor, which shows excellent mechanical properties and aqueous stability, is demonstrated to detect the presence of a chemical in pure water or counterfeit gasoline in pure gasoline by observing mechanical changes, especially variations in the length and diameter of the fiber, and monitoring the electrical resistance change. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 495–502  相似文献   
997.
Synthesis of continuous spinnable carbon nanotube (CNT) fibers is the most promising method for producing CNT fibers for commercial applications. The floating-catalyst chemical vapor deposition (FC-CVD) method is a rapid process that achieves catalyst formation, CNT nucleation and growth, and aerogel-like sock formation within a few seconds. However, the formation mechanism is unknown. Herein, the progress of CNT fiber formation with bimetallic catalysts was studied, and the effect of catalyst composition to CNT fiber synthesis and their structural properties was investigated. In the case of bimetallic catalysts, the carbon source rapidly decomposes and generates various secondary hydrocarbon species, such as CH4, C2H4, C2H2, C3H6, and C4H10 whereas monometallic catalysts generate only CH4 and C2H4 on decomposition. CNT fiber formation with Fe1Ni0 begins about 400 mm from the reactor entrance, whereas CNT formation with Fe0.8Ni0.2 and Fe0.5Ni0.5 begins at about 500 and 300 mm, respectively. The formed CNT bundles and individual CNTs are oriented along the gas flow at these locations. The enhanced rate of fiber formation and lowering of growth temperature associated with bimetallic catalysts is explained by the synergistic effects between the two metals. The synthesized CNTs become predominantly semiconducting with increasing Ni contents.  相似文献   
998.
Three distinct conformational structures of carbaoctaphyrins were prepared by incorporating bis-4,4'-biphenyl units in the macrocyclic core. The free-base form adopts a figure-eight conformation, whereas the protonation triggers a conformational change with a pyrrole ring inversion and acquires an open-framework structure. The insertion of bis-RhI metal ion in the macrocyclic core affords a singly twisted conformational structure. Furthermore, the local aromaticity in the bis-4,4'-biphenyl ring dominates the overall macrocyclic aromaticity in all three forms, and thus adopts nonaromatic characteristics. These results are supported by spectral as well as theoretical studies, and they are unambiguously confirmed by X-ray crystal analyses.  相似文献   
999.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
1000.
The effect of dipole–dipole interaction by nitrile groups of PAN on the bound state of solvent molecules and the concentrated solution properties in DMSO was investigated. Variation of a solution viscosity exhibited three overlap concentrations, C1*, C2*, and C3*, at 2.7, 8.6, and 16.3 wt%, respectively, representing the transition of concentration regions in the order of dilute, unentangled‐semi dilute, entangled‐semi dilute, and concentrated regions. The two‐dimensional mapping of FT‐IR analysis and dielectric measurement confirmed that the intermolecular interaction of PAN was suddenly enhanced at the C*s, inducing polarization to DMSO. In the ice‐melting process of PAN solutions, two different melting peaks (Tm2 and Tm3) of DMSO newly appeared at each C2* and C3*, suggesting the different types of bound solvents. In the concentrated solutions, the saturated dielectric constant and the strongly delayed evaporation of the solvent even at the boiling point of DMSO along with strong thixotropic behavior were indicative of the stronger confinement state of bound DMSO than in the semidilute solutions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1080–1089  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号