首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
化学   30篇
力学   5篇
数学   2篇
物理学   11篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
41.
Chitosan (CS) and poly(acrylic acid) (PAA) were crosslinked by an ionic gelation method to form super absorbent polymers (SAPs). CS and PAA form amide bonds between the amino and carboxyl groups. The CS-PAA copolymers were synthetically engineered by varying the feed ratios of the prepolymer units. The copolymer materials possess tunable sorption and mucoadhesive properties with a backbone structure resembling proteinaceous materials. The sorption properties of the copolymers toward methylene blue (MB) in aqueous solution were studied using UV-Vis spectrophotometry at ambient pH and 295 K. The copolymers showed markedly varied interactions with MB, from physisorption- to chemisorption-like behavior, in accordance with their composition, surface area, and pore structure characteristics. The sorption isotherms were evaluated with the Sips model to provide estimates of the sorption properties. The sorbent surface area (271 and 943 m2/g) and the sorption capacity (Qm = 1.03 and 3.59 mmol/g) were estimated for the CS-PAA copolymer/MB systems in aqueous solution.  相似文献   
42.
We present a method to make continuous multi‐material structures from a monomer solution that becomes a soft hydrogel when exposed to blue light and a hard solid when exposed to UV light. We show that the material can be varied between a hard epoxy material to a several hundred times softer poly(ethylene glycol)‐diacrylate material. Moreover, the elastic properties of the material depend on both the wavelength of and exposure time of the light, which is used to produce a material with an elasticity gradient. We expect our material to find use in a range of fields, with immediate applications as 2D sheets with tunable mechanical properties for cell durotaxis studies, and 3D stereolithographically printed tissue mimicks, for example, for disease models and tissue engineering. Spatially resolved photo‐polymerization of a mixture of epoxy and acrylate monomers can be used to make multi‐material structure, with unique freedom to polymerize each monomer individually. The elastic compressive properties of the material are shown to be fully tunable from <100 kPa to >20 MPa depending on the light exposure time. This is used to make a functionally graded continuous material with a large variation in elastic properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1195–1201  相似文献   
43.
The surface structure is known to significantly affect the long-range capillary forces between hydrophobic surfaces in aqueous solutions. It is, however, not clear how small depressions in the surface will affect the interaction. To clarify this, we have used the AFM colloidal probe technique to measure interactions between hydrophobic microstructured pore array surfaces and a hydrophobic colloidal probe. The pore array surfaces were designed to display two different pore spacings, 1.4 and 4.0 μm, each with four different pore depths ranging from 0.2 to 12.0 μm. Water contact angles measured on the pore array surfaces are lower than expected from the Cassie-Baxter and Wenzel models and not affected by the pore depth. This suggests that the position of the three-phase contact line, and not the interactions underneath the droplet, determines the contact angle. Confocal Raman microscopy was used to investigate whether water penetrates into the pores. This is of importance for capillary forces where both the movement of the three-phase contact line and the situation at the solid/liquid interface influence the stability of bridging cavities. By analyzing the shape of the force curves, we distinguish whether the cavity between the probe and the surfaces was formed on a flat part of the surface or in close proximity to a pore. The pore depth and pore spacing were both found to statistically influence the distance at which cavities form as surfaces approach each other and the distance at which cavities rupture during retraction.  相似文献   
44.
Phase pure samples of the half-Heusler material TiCoSb were synthesised and investigated. Multi-temperature synchrotron powder X-ray diffraction (PXRD) data measured between 90 and 1000 K in atmospheric air confirm the phase purity, but they also reveal a decomposition reaction starting at around 750 K. This affects the high temperature properties since TiCoSb is semiconducting, whereas CoSb is metallic. Between 90 K and 300 K the linear thermal expansion coefficient is estimated to be 10.5 × 10(-6) K(-1), while it is 8.49 10(-6) K(-1) between 550 K and 1000 K. A fit of a Debye model to the Atomic Displacement Parameters obtained from Rietveld refinement of the PXRD data gives a Debye temperature of 395(4) K. The heat capacity was measured between 2 K and 300 K and a Debye temperature of 375(5) K was obtained from modelling of the data. Coming from low temperatures the electrical resistivity shows a metallic to semiconducting transition at 113 K. A relatively high Seebeck coefficient of ~-250 μV K(-1) was found at 400 K, but the substantial thermal conductivity (~10 W mK(-1) at 400 K) leads to a moderate thermoelectric figure of merit of 0.025 at 400 K.  相似文献   
45.
The development of highly enantio- and diastereoselective organocatalytic monofluorovinylations is presented. Based on the application of α-fluoro-β-keto-benzothiazolesulfones, the formal addition of a monofluorovinylic anion synthon to a range of acyclic and cyclic enones, as well as imines, is shown. These procedures give selective access to both E- and Z-isomers of the monofluorovinylated products, which are isolated as the pure diastereoisomers in good to excellent yields with up to 99% ee. Furthermore, the application of this concept for the formation of highly enantioenriched bicylic compounds containing a monofluorovinyl moiety is also described. In addition, a mechanistic rationale for the observed E:Z-selectivities is presented.  相似文献   
46.

Purpose

To compare absolute cerebral blood flow (CBF) estimates obtained by model-free arterial spin labeling (ASL) and dynamic susceptibility contrast MRI (DSC-MRI), corrected for partial volume effects (PVEs).

Methods

CBF was measured using DSC-MRI and model-free ASL (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) at 3 T in 15 subjects with brain tumor, and the two modalities were compared with regard to CBF estimates in normal gray matter (GM) and DSC-to-ASL CBF ratios in selected tumor regions. The DSC-MRI CBF maps were calculated using a global arterial input function (AIF) from the sylvian-fissure region, but, in order to minimize PVEs, the AIF time integral was rescaled by a venous output function time integral obtained from the sagittal sinus.

Results

In GM, the average DSC-MRI CBF estimate was 150±45 ml/(min 100 g) (mean±SD) while the corresponding ASL CBF was 44±10 ml/(min 100 g). The linear correlation between GM CBF estimates obtained by DSC-MRI and ASL was r=.89, and observed DSC-to-ASL CBF ratios differed by less than 3% between GM and tumor regions.

Conclusions

A satisfactory positive linear correlation between the CBF estimates obtained by model-free ASL and DSC-MRI was observed, and DSC-to-ASL CBF ratios showed no obvious tissue dependence.  相似文献   
47.
We demonstrate efficient spectral compression of femtosecond pulses near the zero-dispersion wavelength in nonlinear photonic crystal fibers (PCFs). The highest measured compression factor is 21, in which case the spectral brightness increases by a factor of 5. We numerically model the pulse propagation and find good agreement with the experiment. We argue that the fibers studied allow for spectral narrowing of more than 2 orders of magnitude. With dispersion-shifted PCFs, efficient spectral compression can take place across the visible and near-infrared part of the spectrum.  相似文献   
48.
Hexagonal CeMnNi4 is synthesized by high‐frequency induction melting of stoichiometric amounts of the elements with subsequent Czochralski crystal pulling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号