首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   986篇
  免费   26篇
  国内免费   3篇
化学   587篇
晶体学   2篇
力学   9篇
数学   193篇
物理学   224篇
  2020年   11篇
  2019年   22篇
  2018年   7篇
  2016年   18篇
  2015年   19篇
  2014年   11篇
  2013年   32篇
  2012年   45篇
  2011年   36篇
  2010年   25篇
  2009年   34篇
  2008年   47篇
  2007年   40篇
  2006年   43篇
  2005年   28篇
  2004年   25篇
  2003年   22篇
  2002年   19篇
  2001年   22篇
  2000年   13篇
  1998年   12篇
  1996年   12篇
  1995年   9篇
  1994年   10篇
  1993年   22篇
  1992年   19篇
  1991年   9篇
  1990年   12篇
  1989年   8篇
  1988年   9篇
  1987年   11篇
  1986年   7篇
  1984年   8篇
  1983年   11篇
  1982年   13篇
  1981年   7篇
  1979年   15篇
  1978年   14篇
  1977年   19篇
  1976年   9篇
  1975年   14篇
  1973年   9篇
  1971年   13篇
  1970年   8篇
  1969年   10篇
  1943年   9篇
  1936年   6篇
  1935年   6篇
  1928年   6篇
  1913年   8篇
排序方式: 共有1015条查询结果,搜索用时 15 毫秒
991.
Targeting the genome with sequence‐specific synthetic molecules is a major goal at the interface of chemistry, biology, and personalized medicine. Pyrrole/imidazole‐based polyamides can be rationally designed to target specific DNA sequences with exquisite precision in vitro; yet, the biological outcomes are often difficult to interpret using current models of binding energetics. To directly identify the binding sites of polyamides across the genome, we designed, synthesized, and tested polyamide derivatives that enabled covalent crosslinking and localization of polyamide–DNA interaction sites in live human cells. Bioinformatic analysis of the data reveals that clustered binding sites, spanning a broad range of affinities, best predict occupancy in cells. In contrast to the prevailing paradigm of targeting single high‐affinity sites, our results point to a new design principle to deploy polyamides and perhaps other synthetic molecules to effectively target desired genomic sites in vivo.  相似文献   
992.
Numerous new complexes of the type V(CO)5n(NO)Ln, have been prepared either by nitrosylation of [V(CO)6nLn]?(n  2, 3) with NOX (X  Cl, BF4) and [Co(NO)2Br]2, resp., or by reaction of L with “V(CO)5NO” generated in situ. The compounds comprise n  1: L  PPh3, PMe2H, P(OMe)3 and Ph2PCH2?PPh2 (dppm); n  2: L22  2 PMe2H, 2 PMe3, 2 P(OMe)3, dppm, Ph2P(CH2)2?PPh2, Ph2P(CH2)3,PPh2, Me2P(CH2)2PMe2, Ph2As(CH2)2AsPh2, o?C6H4(AsMe2)2 (diars) and o?C6H4(AsPh2)PPh2; n  3: L3  1.5 diars and CH3C(CH2PPh2)3. IR (CO and NO stretching region) and 51V NMR spectra are discussed; for n  2 and 3, the positions of the arsine and phosphine ligands relative to NO are either cis for all the ligand functions (arsines) or cis/trans.  相似文献   
993.
Colloidal photocatalysts can utilize solar light for the conversion of CO2 to carbon-based fuels, but controlling the product selectivity for CO2 reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO2 reduction even in the absence of transition metal co-catalysts. Besides H2, imidazolium-modified ZnSe QDs evolve up to 2.4 mmolCO gZnSe−1 (TONQD > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using 1H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO2 intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO2 reduction.

A photocatalyst system consisting of ZnSe quantum dots modified with a thiolated imidazolium capping ligand for visible light-driven reduction of aqueous CO2 to CO is reported without the need for a metal complex co-catalyst.  相似文献   
994.
Asymmetric flow field flow fractionation (AsFlFFF) was combined with pyrolysis-gas chromatography mass spectrometry for a sized based fractionation and a detailed compositional study of the triglycerides and cholesterol associated with the various lipoprotein subclasses present in human serum. Serum samples were injected in the AsFlFFF instrument and fractionated with a time-delayed exponential decay cross flow program. The fractions collected after AsFlFFF elution were injected into a programmable temperature vaporizer (PTV) GC-injector, containing a fritted liner. A temperature and split-flow program for the PTV injector was optimized for the thermally assisted hydrolysis and methylation of the compounds of interest. The resulting fatty acid and cholesterol methyl esters were separated by GC and characteristic fragment ions were detected by MS. The system was optimized and calibrated with triglyceride and cholesterol standards for quantitative analysis. The possible interference by phospholipids with the quantitative results was investigated and found to be of minor importance.The concentrations and lipoprotein profiles of triglycerides and cholesterol were determined in a pooled serum sample of healthy volunteers and a serum sample of a sepsis patient. The results obtained with the GC–MS approach were compared with those of a previously developed method based on AsFlFFF with a dual enzymatic reaction detection system. A good agreement of the profiles was found, for cholesterol as well as for the triglycerides, even when the GC–MS method quantifies the fatty acids while with the enzymatic reaction method the glycerol concentrations are determined. Total cholesterol and triglyceride concentration values for the serum samples showed good agreement with the results of the standard enzymatic method as used in practice in the university hospital.  相似文献   
995.
A selective reversed-phase (RP) liquid chromatographic (LC) method coupled with UV for the determination of tylosin and its related substances is described. The gradient method uses a Capcell pak C18 ACR column (25 cm×4.6 mm id, 5 μm) maintained at a temperature of 60°C. The mobile phases consist of acetonitrile, phosphate buffer pH 5.5 and water: (A; 27.5:10:62.5 v/v/v) and (B; 50:10:40 v/v/v). The flow rate is 1.0 mL/min and UV detection is performed at 280 nm. It allows the separation of all known and 22 other unknown related substances (≥0.02%) from the main compound and from one another. The method shows good precision, sensitivity, linearity (between 0.2 μg/mL and 1.25 mg/mL) and robustness. The limit of quantification is 0.2 μg/mL, corresponding to 0.020%. Seven bulk tylosin samples containing a large number of impurities were examined using this method.  相似文献   
996.
Hyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am. Chem. Soc. 1996, 118, 9387). In the present work, these effects are examined by X-band electron spin resonance spectroscopy (ESR) in gamma-irradiated HGW matrix containing 2'-deoxyguanosine-5'-monophosphate. Analysis of the complex ESR spectra indicates that, in addition to OH(*) and HO2(*) radicals generated by water radiolysis, three species are trapped at 77 K:(i) G(C8)H(*) radical, the H-adduct to the double bond at C8; (ii) G(- *) radical anion, the product of electron scavenging by the aromatic ring of the base; and (iii) dR(-H)(*) radicals formed by H abstraction from the sugar moiety, predominantly at the C'5 position. We discuss the yields of the radicals, their thermal stability and transformations, as well as the effect of photobleaching. This study confirms our earlier suggestion that in HGW the H atom addition/abstraction products are created at 77 K in competition with HO2(*) radicals, in a concerted process following ionization of water molecule at L-type defect sites of the H-bonded matrix. The lack of OH(*) reactivity toward the solute suggests that the H-bonded structure in HGW is much more effective in recombining OH(*) radicals than that of aqueous glasses obtained from highly concentrated electrolyte solutions. Furthermore, complementary experiments for the neat matrix have provided evidence that HO2(*) radicals are not the product of H atom reaction with molecular oxygen, possibly generated by ultrasounds used in the process of sample preparation.  相似文献   
997.
Raman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios. On thermal cycling between 80 and 120 K, the reversible phase transition to disordered ice V is observed. The remarkable effect of HCl (DCl) on orientational ordering in ice V and its phase transition to ordered ice XIII, first reported in a powder neutron diffraction study of DCl doped D(2)O ice V (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758), is demonstrated by Raman spectroscopy and discussed. The dopants KOH and HF have only a minor effect on hydrogen ordering in ice V, as shown by the Raman spectra.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号