首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1589篇
  免费   26篇
  国内免费   13篇
化学   963篇
晶体学   3篇
力学   47篇
数学   360篇
物理学   255篇
  2023年   10篇
  2022年   31篇
  2021年   38篇
  2020年   29篇
  2019年   24篇
  2018年   24篇
  2017年   18篇
  2016年   60篇
  2015年   36篇
  2014年   38篇
  2013年   84篇
  2012年   76篇
  2011年   126篇
  2010年   68篇
  2009年   61篇
  2008年   95篇
  2007年   92篇
  2006年   82篇
  2005年   54篇
  2004年   50篇
  2003年   46篇
  2002年   35篇
  2001年   16篇
  2000年   18篇
  1999年   14篇
  1998年   14篇
  1997年   18篇
  1996年   21篇
  1995年   15篇
  1994年   23篇
  1993年   24篇
  1992年   14篇
  1991年   9篇
  1990年   11篇
  1987年   6篇
  1986年   9篇
  1985年   17篇
  1984年   9篇
  1983年   12篇
  1982年   14篇
  1981年   17篇
  1980年   14篇
  1979年   14篇
  1978年   9篇
  1977年   6篇
  1976年   10篇
  1975年   6篇
  1974年   8篇
  1973年   8篇
  1858年   7篇
排序方式: 共有1628条查询结果,搜索用时 15 毫秒
21.
The phosphorus-bridged cavitand 1 self-assembles very efficiently in CH2Cl2 with either the monopyridinium guest 2+ or the bispyridinium guest 3(2+). In the first case a 1:1 complex is obtained, whereas in the second case both 1:1 and 2:1 host-guest complexes are observed. The association between 1 and either one of the guests causes the quenching of the cavitand fluorescence; in the case of the adduct between 1 and 3(2+), the fluorescence of the latter is also quenched. Cavitand complexation is found to affect the reduction potential values of the electroactive guests. Voltammetric and spectroelectrochemical measurements show that upon one-electron reduction both guests are released from the cavity of 1. Owing to the chemical reversibility of such redox processes, the supramolecular complexes can be re-assembled upon removal of the extra electron from the guest. Systems of this kind are promising for the construction of switchable nanoscale devices and self-assembling supramolecular materials, the structure and properties of which can be reversibly controlled by electrochemical stimuli.  相似文献   
22.
The controllable switching of suitably bridged resorcin[4]arene cavitands between a "vase" conformation, with a cavity capable of guest inclusion, and a "kite" conformation, featuring an extended flattened surface, provides the basis for ongoing developments of dynamic molecular receptors, sensors, and molecular machines. This paper describes the synthesis, X-ray crystallographic characterization, and NMR analysis of the "vase-kite" switching behavior of a fully pyrazine-bridged cavitand and five other mixed-bridged quinoxaline-bridged cavitands with one methylene, phosphonate, or phosphate bridge. The pyrazine-bridged resorcin[4]arene cavitand displayed an unexpectedly high preference for the kite conformation in nonpolar solvents, relative to the quinoxaline-bridged analogue. This observation led to extensive solvent-dependent switching studies that provide a detailed picture of how solvent affects the thermal vase-kite equilibration. As for any thermodynamic process in the liquid phase, the conformational equilibrium is affected by how the solvent stabilizes the two individual states. Suitably sized solvents (benzene and derivatives) solvate the cavity of the vase form and reduce the propensity for the vase-to-kite transition. Correspondingly, the kite geometry becomes preferred in bulky solvents such as mesitylene, incapable of penetrating the vase cavity. As proposed earlier by Cram, the kite form is preferred at low temperatures due to the more favorable enthalpy of solvation of the enlarged surface. Furthermore, the kite conformation is more preferred in solvents with substantial hydrogen-bonding acidity: weak hydrogen-bonding interactions between the mildly basic quinoxaline and pyrazine nitrogen atoms and solvent molecules are more efficient in the open kite than in the closed vase form. Vase-to-kite conversion is entirely absent in dipolar aprotic solvents lacking any H-bonding acidity. Thermal vase-kite switching requires fully quinoxaline- or pyrazine-bridged cavitands, whereas pH-controlled switching is also applicable to systems incorporating only two or three such bridges.  相似文献   
23.
Anode-supported solid oxide fuel cells (SOFCs) based on thin BaZr0.8Y0.2O3 ? δ (BZY) electrolyte films were fabricated by pulsed laser deposition (PLD) on sintered NiO–BZY composite anodes. After in situ reduction of NiO to Ni, the anode substrates became porous, while retaining good adhesion with the electrolyte. A slurry-coated composite cathode made of La0.6Sr0.4Co0.2Fe0.8O3 ? δ (LSCF) and BaCe0.9Yb0.1O3 ? δ (BCYb), specifically developed for proton conducting electrolytes, was used to assemble fuel cell prototypes. Depositing by PLD 100 nm thick LSCF porous films onto the BZY thin films was essential to improve the cathode/electrolyte adhesion. A power density output of 110 mW/cm2 at 600 °C, the largest reported value for an anode-supported fuel cell based on BZY at this temperature, was achieved. Electrochemical impedance spectroscopy (EIS) measurements were used to investigate the different contributions to the total polarization losses.  相似文献   
24.
The influence of the positively charged N-methylpyridinium substituent on the anion binding tendencies of urea-based receptors has been investigated by comparing molecules 1 and 2. These receptors have been studied in acetonitrile, by performing UV-vis. and (1)H NMR titrations with several anions. UV-vis. titrations have also been performed in DMSO, MeOH and CHCl(3)/CH(3)CN mixture (1/1, v/v). In the case of 1, the presence of both H-donor and H-acceptor groups (urea and pyridine, respectively) favours aggregation and the formation of dimers in the solid state. In solution, this tendency to aggregate reduces affinity for anions with respect to the similar urea-based receptor 3. The methylation of the pyridyl group of 1 leads to the pyridinium-containing receptor 2. The pyridinium positive charge enhances the acidity of urea and increases anion affinity, as evidenced by the comparison of the binding constants. Both receptors (1-2) form stable adducts with all investigated anions. However, in the case of 2, the formation of 1?:?1 adducts with basic anions, such as acetate and fluoride, is followed by a proton transfer process. Quite interestingly, deprotonation does not involve the urea group, thus preserving the 1?:?1 adduct, as demonstrated by the (1)H NMR measurements. In particular, the proton transfer process takes place at the methylene group linking the pyridinium fragment to the receptor's skeleton. (1)H NMR studies indicate the formation of a stable neutral methine species, characterised by the loss of aromaticity by the pyridyl ring. These results open new perspectives in the field of anion recognition, as receptor 2 may by applied to the monitoring of both bound anion (through the urea unit) and excess anion in solution (through the development of the yellow methine species).  相似文献   
25.
26.
27.
Cellulose - Microcrystalline cellulose (MCC) has unique properties and its use as reinforcement for polymer composites has been increasing. However, the intrinsic incompatibility with most polymers...  相似文献   
28.
The Friedel-Crafts monoacylation of trans-η-[(1RS,2RS,4SR,5SR,6RS,7SR,8SR)-C,5,6,C-η:C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 5 ) is highly stereoselective and yields trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,6-η,oxo-σ:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 8 ) which equilibrates with the trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,5,6,C-η:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 9 ) on heating. Optically pure (–)- 9 has been prepared from the corresponding optically pure alcohol (+)- 4 . The structure and absolute configuration of (–)- 9 was established by single-crystal X-ray diffraction.  相似文献   
29.
The growing numbers related to plastic pollution are impressive, with ca. 70 % of produced plastic (>350 tonnes/year) being indiscriminately wasted in the environment. The most dangerous forms of plastic pollution for biota and human health are micro- and nano-plastics (MNPs), which are ubiquitous and more bioavailable. Their elimination is extremely difficult, but the first challenge is their detection since existing protocols are unsatisfactory for microplastics and mostly absent for nanoplastics. After a discussion of the state of the art for MNPs detection, we specifically revise the techniques based on photoluminescence that represent very promising solutions for this problem. In this context, Nile Red staining is the most used strategy and we show here its pros and limitations, but we also discuss other more recent approaches, such as the use of fluorogenic probes based on perylene-bisimide and on fluorogenic hyaluronan nanogels, with the added values of biocompatibility and water solubility.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号