首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   23篇
  国内免费   4篇
化学   412篇
晶体学   6篇
力学   38篇
数学   79篇
物理学   92篇
  2024年   2篇
  2023年   7篇
  2022年   38篇
  2021年   20篇
  2020年   28篇
  2019年   25篇
  2018年   16篇
  2017年   16篇
  2016年   36篇
  2015年   23篇
  2014年   27篇
  2013年   59篇
  2012年   47篇
  2011年   44篇
  2010年   23篇
  2009年   23篇
  2008年   34篇
  2007年   29篇
  2006年   23篇
  2005年   17篇
  2004年   15篇
  2003年   16篇
  2002年   12篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
排序方式: 共有627条查询结果,搜索用时 15 毫秒
101.
Many applications in science and engineering lead to models that require solving large‐scale fixed point problems, or equivalently, systems of nonlinear equations. Several successful techniques for handling such problems are based on quasi‐Newton methods that implicitly update the approximate Jacobian or inverse Jacobian to satisfy a certain secant condition. We present two classes of multisecant methods which allow to take into account a variable number of secant equations at each iteration. The first is the Broyden‐like class, of which Broyden's family is a subclass, and Anderson mixing is a particular member. The second class is that of the nonlinear Eirola–Nevanlinna‐type methods. This work was motivated by a problem in electronic structure calculations, whereby a fixed point iteration, known as the self‐consistent field (SCF) iteration, is accelerated by various strategies termed ‘mixing’. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
102.
Strain-Induced Crystallization (SIC) is a phenomenon characterized by a considerable increase in stiffness of natural rubbers. In this contribution, this phenomenon is studied in filled natural rubbers and a constitutive model of SIC is proposed. The influence of SIC on the mechanical behavior is described by means of the entropic strain energy subjected to a change due the crystallization. The distribution of crystallines is formulated on the basis of a statistical approach. Their contribution to the partial immobilization of polymer chains is accounted for by assuming the crystalline phase and the amorphous phase to be two separate networks. Finally, the model is compared with available experimental results of uniaxial tension tests. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
103.
Structural and retrostructural analysis of helical dendronized polyacetylenes (i.e., self-organizable polyacetylenes containing first generation dendrons or minidendrons as side groups) synthesized by the polymerization of minidendritic acetylenes with [Rh(nbd)Cl]2 (nbd = 2,5-norbornadiene) reveals an approximately 10% change in the average column stratum thickness (l) of the cylindrical macromolecules with a chiral periphery, through which a strong preference for a single-handed screw-sense is communicated. The cylindrical macromolecules reversibly interconvert between a three-dimensional (3D) centered rectangular lattice (Phi r-c,k) exhibiting long-range intracolumnar helical order at lower temperatures and a two-dimensional (2D) hexagonal columnar lattice (Phi h) with short-range helical order at higher temperatures. A polymer containing chiral, nonracemic peripheral alkyl tails is found to have a larger l as compared to the achiral polymers. In methyl cyclohexane solution, the same polymer exhibits an intense signal in circular dichroism (CD) spectra, whose intensity decreases upon heating. The observed change in l indicates that the chiral tails alter the polymer conformation from that of the corresponding polymer with achiral side chains. This change in conformation results in a relatively large free energy difference (DeltaGh) favoring one helix-sense over the other (per monomer residue). The capacity to distort the polymer conformation and corresponding free energy is related to the population of branches in the chiral tails and their distance from the polymer backbone by comparison to recently reported first and second generation dendronized polyphenylacetylenes.  相似文献   
104.
Important aspects of the electrochemical reduction of a series of substituted benzyl thiocyanates were investigated. A striking change in the reductive cleavage mechanism as a function of the substituent on the aryl ring of the benzyl thiocyanate was observed, and more importantly, a regioselective bond cleavage was encountered. A reductive alpha-cleavage (CH(2)-S bond) was seen for cyano and nitro-substituted benzyl thiocyanates leading to the formation of the corresponding nitro-substituted dibenzyls. With other substituents (CH(3)O, CH(3), H, Cl, and F), both the alpha (CH(2)-S) and the beta (S-CN) bonds could be cleaved as a result of an electrochemical reduction leading to the formation of the corresponding substituted monosulfides, disulfides, and toluenes. These final products are generated through either a protonation or a nucleophilic reaction of the two-electron reduction-produced anion on the parent molecule. The dissociative electron transfer theory and its extension to the formation/dissociation of radical anions, as well as its extension to the case of strong in-cage interactions between the produced fragments ("sticky" dissociative electron transfer (ET)), along with the theoretical calculation results helped rationalize (i) the observed change in the ET mechanism, (ii) the dissociation of the radical anion intermediates formed during the electrochemical reduction of the nitro-substituted benzyl thiocyanates, and more importantly (iii) the regioselective reductive bond cleavage.  相似文献   
105.
We introduce a dynamical model to reduce a large cosmological constant to a sufficiently small value. The basic ingredient in this model is a distinction which has been made between the two unit systems used in cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner, a decaying mechanism is presented in which the conformal factor appears as a dynamical field and plays a key role to relax a large effective cosmological constant. Moreover, we argue that this model also provides a possible explanation for the coincidence problem.  相似文献   
106.
The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ~1000 times compared to the conventional approach.  相似文献   
107.
Room‐temperature magnetization hysterisis measurements were conducted on Mn0.5Zn0.5GdxFe(2‐x)O4 ferrite nanoparticles, with x = 0, 0.5, 1.0, 1.5. The structure of this ferrite is normal spinel where the added of Gd3+ ions occupied the octahedral sites and replaces Fe3+ ions. The saturation magnetization was found to increase with the initial addition of the Gd3+ ions followed by a sharp decrease with further addition of Gd3+ ions. The Curie temperature was found to increase up to Gd3+ concentration of x = 1.0, and then decreases at x = 1.5. These results were attributed to the surface spins. Because the size of Gd3+ ions is larger than that of Fe3+ ions, the substitution of Fe3+ ions with the Gd3+ ions results in surface disorder which results in surface spins. A core‐shell magnetization model was introduced where several factors were combined to explain our results. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
108.
This study aimed to comprehensively investigate the optoelectronic and magnetic properties of Mo, Zn/LiNbO3 (1 1 1) material. The primary objectives were to understand the potential for manipulating the material's magnetism and to elucidate the origin of spin-polarized states and magnetic moments, particularly with respect to the unpaired d orbitals of Nb, Mo, and Zn atoms. To achieve these objectives, we employed the Pardew–Burke–Ernzerhof (PBE) method within the Generalized Gradient Approximation (GGA + U) framework. This computational approach allowed us to examine the optoelectronic and magnetic characteristics of the material in detail. Our research yielded several key findings that enhance our understanding of Mo, Zn/LiNbO3 (1 1 1) material. We observed a modest improvement in the material's absorption capacity within the visible spectrum, accompanied by a discernible red-shift. Notably, our study involved the calculation of the dielectric function and refractive constant of the material, revealing a strong correlation between absorption trends and the dielectric constant. Furthermore, our investigation uncovered that Mo, Zn/LiNbO3 (1 1 1) exhibits distinct conduction and valence bands, with p and d orbitals predominantly contributing to each, respectively. The energy gap of the material falls within a range of 0.30–1.04 eV. A particularly significant finding was the narrower band gap of Mo, Zn/LiNbO3 (1 1 1) material, which can be attributed to the superposition of Mo-d and Zn-p orbit energy levels with O-p orbit energy levels, ultimately forming a covalent bond. Importantly, our research demonstrated the material's heightened optical absorption within the visible spectrum, suggesting its suitability for various photonic and optoelectronic applications. Additionally, we calculated a wide range of optical characteristics, including the dielectric function, absorption coefficient, energy loss, reflectivity, refractive index, extinction coefficient, and optical conductivity, providing a comprehensive assessment of the material's optical properties.  相似文献   
109.
The KdV–Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged nonthermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold(hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space–time fractional KdV–Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.  相似文献   
110.
Using the extended Poincaré-Lighthill-Kuo (EPLK) method, the interaction between two ion acoustic solitary waves (IASWs) in a multicomponent magnetized plasma (including Tsallis nonextensive electrons) has been theoretically investigated. The analytical phase shifts of the two solitary waves after interaction are estimated. The proposed model leads to rarefactive solitons only. The effects of colliding angle, ratio of number densities of (positive/negative) ions species to the density of nonextensive electrons, ion-to-electron temperature ratio, mass ratio of the negative-to-positive ions and the electron nonextensive parameter on the phase shifts are investigated numerically. The present results show that these parameters have strong effects on the phase shifts and trajectories of the two IASWs after collision. Evidently, this model is helpful for interpreting the propagation and the oblique collision of IASWs in magnetized multicomponent plasma experiments and space observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号