首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
化学   36篇
晶体学   1篇
力学   4篇
数学   4篇
物理学   23篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   4篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
11.
12.
Large scale experiments were carried out to study the effect of fuel concentration on air blast parameters and heat radiation from gaseous detonations. Hemispheric plastic envelope (4 meters in radius) was used with propane-air mixtures containing from 4 to 7 vol. % of fuel. The expressions for overpressures and impulses were determined in Sachs variables. The effect of fuel concentration on blast parameters is shown to be insignificant for the same amount of oxygen in the mixture volume. Thus the blast wave parameters can be described as for stoichiometric mixtures using additional scaling for the explosion energy according to oxygen content (cloud volume). The results of large scale experiments with fuel spray clouds containing 0.16–100 tons of fuel with mean concentration from stoichiometric () up to are reconsidered. These results confirm the proposed scaling of air blast parameters for a wide range of fuel types, cloud volumes and fuel concentrations. Detonations of fuel rich gaseous mixtures result in a strong heat radiation. Heat radiation energy, time and size of the fireball formed are studied as a function of fuel concentration. Received March 10, 1995 / Accepted March 12, 1995  相似文献   
13.
The goal of this study is to elucidate the formation of molecular gradients made of semifluorinated organosilanes (SFOs) on flat substrates by using a methodology developed by Chaudhury and Whitesides (Science 1992, 256, 1539). We use surface-sensitive combinatorial near-edge X-ray absorption fine structure (combi-NEXAFS) spectroscopy to measure the position-dependent concentration and orientation of SFO molecules in SFO molecular gradients on flat silica surfaces. Using the combi-NEXAFS data, we establish the correlation between the fraction of the F(CF(2))(8)(CH(2))(2)- species on the substrate and the average tilt angle of the -(CF(2))(8)F group in the SFO as a function of the deposition gas medium (air vs nitrogen) and the end group around the silicon atom (monofunctional vs trifunctional). In addition, we utilize the gradient geometry to comprehend the mechanism of formation of SFO self-assembled monolayers (SAMs). Specifically, we provide evidence that depending on the nature of the end group in the SFO and the vapor phase the SFO molecules add themselves into the existing SAMs either as individual molecules or as multimolecular complexes.  相似文献   
14.
15.
Models, mechanisms, and criteria of formation of protective coatings on graphite by a microspark oxidation method (MSO) are considered. It is established that a prerequisite for the graphite MSO is the deposition of a barrier film of a valve metal oxide at the graphite surface. Optimum regimes of the graphite MSO in aqueous solutions of sodium aluminate are determined. Protective coatings on graphite comprising α-phase aluminum oxide are obtained. It is concluded that the graphite MSO should be viewed as a version of MSO of metals, which involves the electrochemical deposition (at high voltages that cause the anode to microspark) of oxide films consisting of electrolyte components on graphite, as opposed to a version of MSO of metals, which involves the formation of an anodic film consisting of electrolyte components and the intrinsic oxide.  相似文献   
16.
17.
Methods for the synthesis of new palladium(II) acetate complexes [L2Pd(OCOCH3)2], where L is N-coordinated morpholine (C4H9ON) or 4-methylmorpholine (C5H11ON), have been developed. The structure of the complex (C4H9ON)2Pd(OAc)2 · 2H2O (1) has been established by X-ray diffraction. The crystals of 1 are monoclinic (C12H26O8N2Pd, M = 434.76), space group P2(1)/c, a = 9.129(3) Å, b = 16.227(5) Å, c = 6.159(2) Å, V = 878.5(5) Å3, Z = 2. The palladium atom has a square-planar environment with the trans arrangement of ligands. The complex (C5H11ON)2Pd(OAc)2 (2) has a similar structure, according to spectroscopic data.  相似文献   
18.
The interactions of palladium cation-anion compounds (C4H10NO)2[PdCl4], K2[PdCl4], and K2[PdBr4] with DNA in 0.005 M NaCl and 0.15 M NaCl solutions were studied by spectrophotometry, circular dichroism, viscosimetry, dynamic birefringence, and atomic force microscopy. The interactions are primarily effected by coordination of the donor atoms of DNA bases by palladium. The end products of interactions with palladium acido complexes are independent of the macromolecule and the nature of halogen X in [PdX4]2−. The significant changes in the conformation of DNA in palladium complexes resulted from both intra- and intermolecular cross-linkings induced by palladium.  相似文献   
19.
The MW-dielectric properties of aqueous solutions of K2[PtCl4] (I) and K2[PdCl4] (II) were studied at 298 and 313 K in the frequency range (12–25 GHz) corresponding to the maximum dielectric constant dispersion for water and aqueous solutions of these salts. The low-frequency conductivities were measured. The static dielectric constant, the dielectric relaxation time, and the enthalpy of activation of the dielectric relaxation of the solutions were determined. Compared to pure water, in solutions of salts I and II, the orientational mobility of water molecules is increased and the network of H-bonds is violated more strongly than that of most other ions with hydrophilic hydration. It was demonstrated for the first time that dielectric spectroscopy can be used for analyzing complexation processes in systems containing aqua and hydroxo chloride complexes of metals.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号