首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   10篇
化学   227篇
力学   2篇
数学   6篇
物理学   36篇
  2023年   2篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2016年   6篇
  2015年   9篇
  2014年   5篇
  2013年   7篇
  2012年   14篇
  2011年   16篇
  2010年   7篇
  2009年   3篇
  2008年   24篇
  2007年   24篇
  2006年   14篇
  2005年   18篇
  2004年   14篇
  2003年   7篇
  2002年   13篇
  2001年   3篇
  2000年   9篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1979年   7篇
  1976年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
31.
The cyano-substituted metallocenes [M(C5H4CN)2] (M=Fe, 1; Co, 2; Ni 3) and [M(C5Me5)(C5H4CN)] (M=Fe, 4; Co, 5; Ni, 6) were synthesized in yields up to 58 % by treating K(C5H4CN) or Tl(C5H4CN) with suitable transition-metal precursors. Cyclic voltammetry indicated that the oxidation and reduction potentials of all the cyanometallocenes were shifted to positive values by up to 0.8 V. Single-crystal X-ray structure analysis showed that 1 had eclipsed ligands, formed planes in the lattice, and--unlike usual metallocenes--lined up in stacks perpendicular to these planes. Powder X-ray studies established that 1 and 2 are isotypic. The 1H and 13C NMR spectra were recorded for all the new compounds. Signal shifts of up to delta=1500 ppm were recorded for the paramagnetic molecules 2 and 3 and were, at a given temperature, strikingly different for solution and solid-state spectra. These results pointed to antiferromagnetic interactions as a consequence of molecular ordering in the lattice, as confirmed by magnetic measurements. The temperature-dependent susceptibilities were reproduced by Heisenberg spin-chain models (H=-J sum n- 1 i=1 SiSi+1), thus yielding J=-28.3 and -10.3 cm(-1) for 2 and 3, respectively, whereas J=-11.8 cm(-1) was obtained for 3 from the Ising spin-chain model. In accordance with molecular orbital (MO) considerations, much spin density was found to be delocalized not only on the cyclopentadienyl ligand but also the cyano substituents. The magnetic interaction was interpreted as a Heitler-London spin exchange and was analyzed based on how the interaction depends on the singly occupied MOs and the shift of parallel metallocenes relative to each other.  相似文献   
32.
As a key element in the construction of complex organic scaffolds, the formation of C?C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single‐electron chemistry have enabled new methods for the formation of various C?C bonds. Disclosed herein is the development of a novel single‐electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N‐heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late‐stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.  相似文献   
33.
The mechanism of amyloid co-aggregation and its nucleation process are not fully understood in spite of extensive studies. Deciphering the interactions between proinflammatory S100A9 protein and Aβ42 peptide in Alzheimer''s disease is fundamental since inflammation plays a central role in the disease onset. Here we use innovative charge detection mass spectrometry (CDMS) together with biophysical techniques to provide mechanistic insight into the co-aggregation process and differentiate amyloid complexes at a single particle level. Combination of mass and charge distributions of amyloids together with reconstruction of the differences between them and detailed microscopy reveals that co-aggregation involves templating of S100A9 fibrils on the surface of Aβ42 amyloids. Kinetic analysis further corroborates that the surfaces available for the Aβ42 secondary nucleation are diminished due to the coating by S100A9 amyloids, while the binding of S100A9 to Aβ42 fibrils is validated by a microfluidic assay. We demonstrate that synergy between CDMS, microscopy, kinetic and microfluidic analyses opens new directions in interdisciplinary research.

Templating mechanism of S100A9 amyloids on Aβ fibrillar surfaces during amyloid co-aggregation process was revealed by synergy of biophysical methods including charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses.  相似文献   
34.
The normal-mode spectrum for the four-coordinated heme compound Fe(II) octaethylporphyrin, Fe(OEP), has been determined by refining force constants to the experimental Fe vibrational density of states measured with nuclear resonance vibrational spectroscopy (NRVS). Convergence of the calculated spectrum to the data was achieved by first imposing D4 symmetry on the model structure as well as the force constants, progressively including different internal coordinates of motion, then allowing the true Ci (or S2) point group symmetry of the C(i)1 Fe(OEP) crystal structure. The NRVS-refined normal modes are in good agreement with Raman and IR spectra at high frequencies. Prior density functional theory predictions for a model porphyrin are similar to the core modes computed with the best-fit force field, but significant differences between D4 and Ci modes underline the sensitivity of porphyrin Fe normal modes to structural details. Some differences between the Ci best fit and the NRVS data can be attributed to intermolecular contacts not included in the normal-mode analysis.  相似文献   
35.
36.
37.
The existence of single-molecule surface-enhanced Raman spectroscopy (SMSERS) is proven by employing a frequency-domain approach. This is demonstrated using two isotopologues of Rhodamine 6G that offer unique vibrational signatures. When an average of one molecule was adsorbed per silver nanoparticle, only one isotopologue was typically observed under dry N2 environment. Additionally, the distribution of vibrational frequencies hidden under the ensemble average is revealed by examining the single-molecule spectra. Correlation with transmission electron microscopy reveals that SMSERS active aggregates are composed of multiple randomly sized and shaped nanoparticles. At higher coverage and in a humid environment, adsorbate interchange was detected. Using 2D cross correlation, vibrational modes from different isotopologues were anti-correlated, indicating that the dynamic behavior was from multiple molecules competing for a single hot spot. This allows hot-spot diffusion to be directly observed without analyzing the peak intensity fluctuations.  相似文献   
38.
39.
The preparation and characterization of several new cyano-ligated six-coordinate low-spin iron(III) porphyrinates are reported. The synthesis and structure of the new bis(cyanide) derivative K(222)][Fe(TMP)(CN)2] (TMP = tetramesitylporphyrinate) is described. Three mixed-ligand species of the general form [Fe(Porph)(CN)(L)], where L = 1-methylimidazole or pyridine, have also been prepared and structurally characterized. All complexes have been studied with EPR spectroscopy in frozen solution and in microcrystalline form. In some cases, especially those of the bis(cyanide) derivative above and the previously reported [Fe(TPP)(CN)2](-), there are significant differences in the EPR spectra as a result of the state change. These spectral differences can be correlated with changes in the electron configuration that are the likely result of a differing environment of the coordinated cyanide ligands; the core conformation and electronic structure of the porphyrin ligand are unlikely to play a role. All four new complexes and [Fe(TPP)(CN)2](-) have been studied by M?ssbauer spectroscopy with variable-temperature and applied magnetic-field measurements. The sign of the quadrupole splitting value has been established as negative. These measurements have allowed us to give estimates of the energy difference between the two close-lying dpi (dxz and dyz) orbitals. These splitting values range from approximately 267 cm-1 for [Fe(TPP)(CN)2](-) to approximately 614 cm(-1) for [Fe(TPP)(CN)(Py)].  相似文献   
40.
In the absence of X‐ray data, the exploration of compound binding modes continues to be a challenging task. For structure‐based design, specific features of active sites in different targets play a major role in rationalizing ligand binding characteristics. For example, dibasic compounds have been reported as potent inhibitors of various trypsin‐like serine proteases, the active sites of which contain several binding pockets that can be targeted by cationic moieties. This results in several possible orientations within the active site, complicating the binding mode prediction of such compounds by docking tools. Therefore, we introduced symmetry in bi‐ and tribasic compounds to reduce conformational space in docking calculations and to simplify binding mode selection by limiting the number of possible pocket occupations. Asymmetric bisbenzamidines were used as starting points for a multistage and structure‐guided optimization. A series of 24 final compounds with either two or three benzamidine substructures was ultimately synthesized and evaluated as inhibitors of five serine proteases, leading to potent symmetric inhibitors for the pharmaceutical drug targets matriptase, matriptase‐2, thrombin and factor Xa. This study underlines the relevance of ligand symmetry for chemical biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号