首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
化学   13篇
晶体学   1篇
物理学   13篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
The results of a first-principles study supported by the temperature-quenched laser-heated diamond anvil-cell experiments on the high-pressure high-temperature structural behavior of pure iron are reported. We show that in contrast to the widely accepted picture, the face-centered cubic (fcc) phase becomes as stable as the hexagonal-close-packed (hcp) phase at pressures around 300-360 GPa and temperatures around 5000-6000 K. Our temperature-quenched experiments indicate that the fcc phase of iron can exist in the pressure-temperature region above 160 GPa and 3700 K, respectively. This, in particular, means that the actual structure of the Earth's core may be a complex phase with a large number of stacking faults.  相似文献   
2.
A nitrogen‐rich compound, ReN8?x N2, was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser‐heated diamond anvil cell. Single‐crystal X‐ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular‐shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100 GPa, ReN8?x N2 is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [?N=N?] that constitute the framework have not been previously observed in any compound. Ab initio calculations on ReN8?x N2 provide strong support for the experimental results and conclusions.  相似文献   
3.
The incorporation of noble gas atoms, in particular neon, into the pores of network structures is very challenging due to the weak interactions they experience with the network solid. Using high‐pressure single‐crystal X‐ray diffraction, we demonstrate that neon atoms enter into the extended network of ammonium metal formates, thus forming compounds Nex[NH4][M(HCOO)3]. This phenomenon modifies the compressional and structural behaviours of the ammonium metal formates under pressure. The neon atoms can be clearly localised within the centre of [M(HCOO)3]5 cages and the total saturation of this site is achieved after ~1.5 GPa. We find that by using argon as the pressure‐transmitting medium, the inclusion inside [NH4][M(HCOO)3] is inhibited due to the larger size of the argon. This study illustrates the size selectivity of [NH4][M(HCOO)3] compounds between neon and argon insertion under pressure, and the effect of inclusion on the high‐pressure behaviour of neon‐bearing ammonium metal formates.  相似文献   
4.
Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus–nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0=322 GPa for δ-P3N5 and 339 GPa for PN2. Upon decompression below 7 GPa, δ-P3N5 undergoes a transformation into a novel α′-P3N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α′-P3N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.  相似文献   
5.
Based on the results from previous high-pressure experiments on the gadolinite-type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates β-HfB2O5 and β-ZrB2O5 have been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction experiments. On compression to 120 GPa, both borate layer-structures are preserved. Additionally, at ≈114 GPa, the formation of a second phase can be observed in both compounds. The new high-pressure modification γ-ZrB2O5 features a rearrangement of the corner-sharing BO4 tetrahedra, while still maintaining the four- and eight-membered rings. The new phase γ-HfB2O5 contains ten-membered rings including the rare structural motif of edge-sharing BO4 tetrahedra with exceptionally short B−O and B⋅⋅⋅B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low-energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.  相似文献   
6.
Owing to its outstanding elastic properties, the nitride spinel γ‐Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4‐analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite‐type BeP2N4 by single‐crystal synchrotron X‐ray diffraction and report the phase transition into the spinel‐type phase at 47 GPa and 1800 K in a laser‐heated diamond anvil cell. The structure of spinel‐type BeP2N4 was refined from pressure‐dependent in situ synchrotron powder X‐ray diffraction measurements down to ambient pressure, which proves spinel‐type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel‐type BeP2N4 is an ultraincompressible material.  相似文献   
7.
The diamond anvil cell (DAC) technique coupled with laser heating has become the most successful method for studying materials in the multimegabar pressure range at high temperatures. However, so far all DAC laser‐heating systems have been stationary: they are linked either to certain equipment or to a beamline. Here, a portable laser‐heating system for DACs has been developed which can be moved between various analytical facilities, including transfer from in‐house to a synchrotron or between synchrotron beamlines. Application of the system is demonstrated in an example of nuclear inelastic scattering measurements of ferropericlase (Mg0.88Fe0.12)O and h.c.p.‐Fe0.9Ni0.1 alloy, and X‐ray absorption near‐edge spectroscopy of (Mg0.85Fe0.15)SiO3 majorite at high pressures and temperatures. Our results indicate that sound velocities of h.c.p.‐Fe0.9Ni0.1 at pressures up to 50 GPa and high temperatures do not follow a linear relation with density.  相似文献   
8.
Owing to its outstanding elastic properties, the nitride spinel γ-Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4-analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite-type BeP2N4 by single-crystal synchrotron X-ray diffraction and report the phase transition into the spinel-type phase at 47 GPa and 1800 K in a laser-heated diamond anvil cell. The structure of spinel-type BeP2N4 was refined from pressure-dependent in situ synchrotron powder X-ray diffraction measurements down to ambient pressure, which proves spinel-type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel-type BeP2N4 is an ultraincompressible material.  相似文献   
9.
Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one‐step synthesis of metal–inorganic frameworks Hf4N20?N2, WN8?N2, and Os5N28?3 N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN8, and Os5N28) are built from transition‐metal atoms linked either by polymeric polydiazenediyl (polyacetylene‐like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high‐pressure reaction between Hf and N2 also leads to a non‐centrosymmetric polynitride Hf2N11 that features double‐helix catena‐poly[tetraz‐1‐ene‐1,4‐diyl] nitrogen chains [?N?N?N=N?].  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号