首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
化学   28篇
力学   3篇
数学   1篇
物理学   29篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1992年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1980年   1篇
  1974年   2篇
  1932年   2篇
  1927年   1篇
  1925年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
51.
Three syntheses of the architecturally complex, cytotoxic marine macrolide (+)-spongistatin 1 (1) are reported. Highlights of the first-generation synthesis include: use of a dithiane multicomponent linchpin coupling tactic for construction of the AB and CD spiroketals, and their union via a highly selective Evans boron-mediated aldol reaction en route to an ABCD aldehyde; introduction of the C(44)-C(51) side chain via a Lewis acid-mediated ring opening of a glucal epoxide with an allylstannane to assemble the EF subunit; and final fragment union via Wittig coupling of the ABCD and EF subunits to form the C(28)-C(29) olefin, followed by regioselective Yamaguchi macrolactonization and global deprotection. The second- and third-generation syntheses, designed with the goal of accessing 1 g of (+)-spongistatin 1 (1), maintain both the first-generation strategy for the ABCD aldehyde and final fragment union, while incorporating two more efficient approaches for construction of the EF Wittig salt. The latter combine the original chelation-controlled dithiane union of the E- and F-ring progenitors with application of a highly efficient cyanohydrin alkylation to append the F-ring side chain, in conjunction with two independent tactics to access the F-ring pyran. The first F-ring synthesis showcases a Petasis-Ferrier union/rearrangement protocol to access tetrahydropyrans, permitting the preparation of 750 mg of the EF Wittig salt, which in turn was converted to 80 mg of (+)-spongistatin 1, while the second F-ring strategy, incorporates an organocatalytic aldol reaction as the key construct, permitting completion of 1.009 g of totally synthetic (+)-spongistatin 1 (1). A brief analysis of the three syntheses alongside our earlier synthesis of (+)-spongistatin 2 is also presented.  相似文献   
52.
53.
The reaction of benzoyl chloride with [Rh(dppp)2]Cl at 190°C and with [Rh(dppp)Cl]1 or 2 at 25°C where dppp  1,3-bis(diphenylphosphino)propane has been examined. In both cases the five coordinate compound RhCl2(COPh)-(dppp) was rapidly formed and isolated in high yield. This compound does not undergo phenyl migration to RhCl2(CO)(Ph)(dppp) even upon warming to 190°C in benzoyl chloride solution and no decarbonylation products are observed. This is in marked contrast to the reaction of RhCl(PPh3)3 with benzoyl chloride where the migrated product RhCl2(CO)(Ph)(PPh3)2 is formed with the eventual reductive elimination of chlorobenzene. The single crystal X-ray analysis of RhCl2(COPh)(dppp) has been carried out (R  0.036). The compound is square pyramidal with the COPh group in the apical position. The Rh—C bond distance of 1.992(3) Å is short for a RhIII—Cσ bond and indicates dπ → π back bonding.  相似文献   
54.
55.
56.
57.
G. R. Doughty  D. J. Fray 《Ionics》1997,3(5-6):338-344
Sodium metal is an excellent reductant and can be used to reduce most metallic chlorides and many oxides. However, sodium is relatively expensive and is hazardous to store so that it is only used to reduce titanium tetrachloride to titanium. In-situ electrolytic preparation of sodium from sodium chloride in a reactor is difficult due to the evolution of chlorine, another hazardous substance. A novel cell is described where the sodium salt is separated from the salt to be reduced by a sodium beta alumina membrane. The anode is in the sodium salt and the cathode is in the metallic salt and, on the application of current, it has been found that the metal ions are reduced to the metal and the anion in the sodium salt is oxidised. By using sodium hydroxide or sodium carbonate as the sodium salt, the anodic products are oxygen and water vapour or oxygen and carbon dioxide. Examples are given of electrolytic cells incorporating beta alumina membranes for the production of magnesium and zirconium from the chlorides where the metal is produced and the anodic gases are not toxic. Overall these cells are very efficient as the anodic and cathodic products are separated by the beta alumina membrane and compared with existing cells some of the electrical energy requirement is replaced by chemical energy. The environmental benefits of these cells are very attractive for the production of reactive metals on a small scale. Paper presented at the 4th Euroconference on Solid State Ionics, Connemara, Galway, Ireland, Sept. 13–19, 1997  相似文献   
58.
Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH4. It is well known that CH4 drastically alters supercritical CO2 density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH4 on supercritical CO2 injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO2; and (3) with residual CH4. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile-gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.  相似文献   
59.
One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically-driven approach for CO2 release by exploiting the unique properties of an indazole metastable-state photoacid (mPAH). Our measurements on simulated and amino acid-based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid-based DAC systems, respectively. Our results confirm the feasibility of on-demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.  相似文献   
60.
Neutral superexcited states in molecular oxygen converging to the O(2)(+) c (4)Σ(u)(-) ion state are excited and probed with femtosecond time-resolved photoelectron spectroscopy to investigate predissociation and autoionization relaxation channels as the superexcited states decay. The c (4)Σ(u)(-) 4sσ(g) v=0, c (4)Σ(u)(-) 4sσ(g) v=1, and c (4)Σ(u)(-) 3dσ(g) v=1 superexcited states are prepared with pulsed high-harmonic radiation centered at 23.10 eV. A time-delayed 805 nm laser pulse is used to probe the excited molecular states and neutral atomic fragments by ionization; the ejected photoelectrons from these states are spectrally resolved with a velocity map imaging spectrometer. Three excited neutral O* atom products are identified in the photoelectron spectrum as 4d(1)?(3)D(J)°, 4p(1) (5)P(J)° and 3d(1) (3)D(J)° fragments. Additionally, several features in the photoelectron spectrum are assigned to photoionization of the transiently populated superexcited states. Using principles of the ion core dissociation model, the atomic fragments measured are correlated with the molecular superexcited states from which they originate. The 4d(1) (3)D(J)° fragment is observed to be formed on a timescale of 65 ± 5 fs and is likely a photoproduct of the 4sσ(g) v = 1 state. The 4p(1) (5)P(J)° fragment is formed on a timescale of 427 ± 75 fs and correlated with the neutral predissociation of the 4sσ(g) v = 0 state. The timescales represent the sum of predissociation and autoionization decay rates for the respective superexcited state. The production of the 3d(1) (3)D(J)° fragment is not unambiguously resolved in time due to an overlapping decay of a v = 1 superexcited state photoelectron signal. The observed 65 fs timescale is in good agreement with previous experiments and theory on the predissociation lifetimes of the v = 1 ion state, suggesting that predissociation may dominate the decay dynamics from the v = 1 superexcited states. An unidentified molecular state is inferred by the detection of a long-lived depletion signal (reduction in autoionization) associated with the B (2)Σ(g)(-) ion state that persists up to time delays of 105 ps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号