首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   8篇
化学   59篇
晶体学   1篇
力学   3篇
综合类   2篇
数学   8篇
物理学   63篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   8篇
  2009年   6篇
  2008年   11篇
  2007年   9篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
71.
72.
We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.  相似文献   
73.
By carrying out first-principles calculations on diamond-forming processes, we predict a method for the heteroepitaxial growth of diamond on cubic beta-SiC(001). In the method, we used two processes: (i) the preformation of an sp(3)-like surface configuration of beta-SiC(001) by the adsorption of group-V surfactants; (ii) the successive growth of diamond by the segregation of the surfactants onto a surface and the desorption of surface hydrogen. Analyzing the segregation energies, we found that the atomic size effect plays a crucial role in the surfactant-mediated growth of diamond on beta-SiC(001).  相似文献   
74.
We present measurements of the Fermi surface and underlying band structure of a single layer of indium on Si(111) with square root 7 x square root 3 periodicity. Electrons from both indium valence electrons and silicon dangling bonds contribute to a nearly free, two-dimensional metal on a pseudo-4-fold lattice, which is almost completely decoupled at the Fermi level from the underlying hexagonal silicon lattice. The mean free path inferred from our data is quite long, suggesting the system might be a suitable model for studying the ground state of two-dimensional metals.  相似文献   
75.
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.  相似文献   
76.
Supramolecular chemistry utilizes coordination bonds to assemble molecular building blocks into a variety of sophisticated constructs. However, traditional coordination assemblies are based on organic compounds that have limited ability to transport charge. Herein, we describe coordination assembly of anisotropic FeS2 pyrite nanoparticles (NPs) that can facilitate charge transport. Zn2+ ions form supramolecular complexes with carboxylate end‐groups on NP surface, leading to multiparticle sheets with liquid‐crystal‐like organization. Conductivity and Hall carrier mobility of the p‐type layered semiconductor films with Zn2+ coordination bridging exceed those known for coordination compounds, some by several orders of magnitude. The nanoscale porosity of the assembled sheets combined with fast hole transport leads to high electrocatalytic activity of the NP films. The coordination assembly of NPs embraces the versatility of several types of building blocks and opens a new design space for self‐organized materials combining nanoscale and supramolecular structural motifs.  相似文献   
77.
Considering the shear-thinning feature of blood viscosity, the characteristics of non-Newtonian fluids are important in pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, blocks blood flow to downstream tissues and leads to plaque rupture. In smaller arteries of diameters up to a few hundred micrometers, such stenosis can result in severe consequences. Therefore, a systematic analysis of the blood flow around the stenosed microchannel is important. In this study, non-Newtonian behaviors of the blood flow around a microchannel of diameter 500 μm, with 60% severe stenosis, were examined using CFX under pulsatile flow condition, with a period of 1 s and Reynolds number of 14.025 at the systolic phase. The viscosity information of the two non-Newtonian samples and the used pulsatile profile were based on our previous study. For comparison, water at room temperature was used as the Newtonian fluid. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In the case of the water flow, the recirculation occurred downstream the stenosis. This recirculation made the vortex structures travel the longest and induced a low WSS distribution and rapid normalized pressure drop at downstream of the stenosis. Conversely, the non-Newtonian feature of viscosity made flow structures almost symmetric, with respect to the stenosis. However, the highly oscillating WSS enhances the tendency of plaque instability and damage to the endothelium. Our findings on the influence of blood viscosity on stenotic lesions may help clinicians understand relevant mechanisms.  相似文献   
78.
ABSTRACT

Ultrafine-grained (UFG) structure is beneficial for overcoming the strength-ductility trade-off and enhancing the superplasticity of two-phase Ti alloys. Recently, it has been demonstrated that compression with decreasing temperatures is effective for producing UFG two-phase Ti alloys initially with lamellar microstructures. However, the effect of lamellar thickness on the microstructural evolution during this process has not yet been fully elucidated. In this study, Ti-6Al-4V alloys with different lamellar thicknesses were compressed while the processing temperature was decreased from 800°C to 600°C. The thinner lamellar microstructure was preferable for preventing void/crack formation, while accelerating the continuous dynamic recrystallisation, thus providing a fully UFG structure at a relatively low strain of 1.4. In addition, the origin of different plastic flows in each sample was analysed in detail by analysing the microstructural evolution. These findings demonstrate that the processing method is effective for reducing the grain size of a two-phase Ti alloy without severe plastic deformation techniques, which require large strain (≥4). A reduction in the strain required to achieve the UFG structure would be beneficial because conventional metal-forming processes, i.e. rolling, extrusion, or forging, which are suitable for mass production, could be used.  相似文献   
79.
Identifying materials contributing to skin hydration, essential for normal skin homeostasis, has recently gained increased research interest. In this study, we investigated the potential benefits and mechanisms of action of Aspergillus oryzae-fermented wheat peptone (AFWP) on the proliferation and hydration of human skin keratinocytes, through in vitro experiments using HaCaT cell lines. The findings revealed that compared to unfermented wheat peptone, AFWP exhibited an improved amino acid composition, significantly (p < 0.05) higher DPPH scavenging capability and cell proliferation activity, and reduced lipopolysaccharide-induced NO production in RAW 264.7 cells. Furthermore, we separated AFWP into eleven fractions, each ≤2 kDa; of these, fraction 4 (AFW4) demonstrated the highest efficacy in the cell proliferation assay and was found to be the key component responsible for the cell proliferation potential and antioxidant properties of AFWP. Additionally, AFW4 increased the expression of genes encoding natural moisturizing factors, including filaggrin, transglutaminase-1, and hyaluronic acid synthase 1–3. Furthermore, AFW4 activated p44/42 MAPK, but not JNK and p38 MAPK, whereas PD98059, a p44/42 MAPK inhibitor, attenuated the beneficial effects of AFW4 on the skin, suggesting that the effects of AFW4 are mediated via p44/42 MAPK activation. Finally, in clinical studies, AFW4 treatment resulted in increased skin hydration and reduced trans-epidermal water loss compared with a placebo group. Collectively, these data provide evidence that AFW4 could be used as a potential therapeutic agent to improve skin barrier damage induced by external stresses.  相似文献   
80.
Nonlinear optical characteristics of single-walled carbon nanotubes (SWCNTs) dispersed in dichlorobenzene and imbedded in polymer were investigated at 800 nm using the time-resolved optical Kerr gate technique. For systematic study of the influence of SWCNT bundling on optical nonlinearities, SWCNT solutions with different concentrations and a series of SWCNT/polymer composites deposited on glass substrates with different concentrations and thicknesses were prepared. The nonlinear response was comparable to the pulse duration of the laser used (~90 fs) both in SWCNT solutions and SWCNT/polymer composites. Over three orders of magnitude enhancement was observed in the third-order nonlinear susceptibility of SWCNT/polymer composite film compared with that of SWCNT solution. An appreciable reduction of microscopic and macroscopic nonlinearities was observed with increasing SWCNT concentrations due to stronger bundling of SWCNTs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号