首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1553篇
  免费   77篇
  国内免费   31篇
化学   1083篇
晶体学   14篇
力学   68篇
综合类   1篇
数学   105篇
物理学   390篇
  2024年   3篇
  2023年   12篇
  2022年   14篇
  2021年   25篇
  2020年   27篇
  2019年   36篇
  2018年   17篇
  2017年   10篇
  2016年   35篇
  2015年   33篇
  2014年   46篇
  2013年   61篇
  2012年   111篇
  2011年   138篇
  2010年   70篇
  2009年   67篇
  2008年   108篇
  2007年   76篇
  2006年   68篇
  2005年   90篇
  2004年   64篇
  2003年   51篇
  2002年   46篇
  2001年   43篇
  2000年   33篇
  1999年   20篇
  1998年   13篇
  1997年   20篇
  1996年   30篇
  1995年   15篇
  1994年   24篇
  1993年   31篇
  1992年   26篇
  1991年   17篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   13篇
  1986年   8篇
  1985年   18篇
  1984年   17篇
  1983年   9篇
  1982年   6篇
  1981年   10篇
  1979年   7篇
  1978年   13篇
  1977年   3篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
排序方式: 共有1661条查询结果,搜索用时 0 毫秒
101.
102.
Recently, the organic synthesis and electronic device applications of π-conjugated polymer-based materials with low energy band gap (below 2 eV) and high values of incident photon to current efficiency have been presented. In the present study, the physical properties of polythiophene (PTH) and its derivative systems (PTs) were investigated as π-conjugated low energy band gap polymers. Density functional theory with periodic boundary condition (PBC), the B3LYP functional, and the 6-31G(d) basis set was applied to determine their geometric and electronic structures and corresponding energies (E HOMO, E LUMO, and E g = E LUMO ? E HOMO) from the monomer of thiophene and its derivatives for one-dimensional (1D) extension to polymer. The effects of 3-substitution in PTs including electron-donating (CH3–, C6H13–, OH–, Cl–, OCH3–, and CHO–) and electron-withdrawing groups (Cl–, CHO–, CN–, NO2–, CF3–, and COOH–) compared with PTH were investigated. According to the calculation results, PTs with electron-donating and electron-withdrawing substituents should exhibit red- and blue-shifts, respectively, compared with PTH. These calculation results show good agreement with experimental data and provide further information for molecular design considerations.  相似文献   
103.
Crown ethers are small, cyclic polyethers that have found wide‐spread use in phase‐transfer catalysis and, to a certain degree, in protein chemistry. Crown ethers readily bind metallic and organic cations, including positively charged amino acid side chains. We elucidated the crystal structures of several protein‐crown ether co‐crystals grown in the presence of 18‐crown‐6. We then employed biophysical methods and molecular dynamics simulations to compare these complexes with the corresponding apoproteins and with similar complexes with ring‐shaped low‐molecular‐weight polyethylene glycols. Our studies show that crown ethers can modify protein surface behavior dramatically by stabilizing either intra‐ or intermolecular interactions. Consequently, we propose that crown ethers can be used to modulate a wide variety of protein surface behaviors, such as oligomerization, domain–domain interactions, stabilization in organic solvents, and crystallization.  相似文献   
104.
Trace quantities of hydrogen‐bonding impurities in otherwise highly purified and dried glassy hydrocarbon matrices at 77 K can modify the relative triplet state energy levels, and hence the photophysical properties of two aromatic ketones, xanthone and chromone, to the extent that the intrinsic spectroscopic properties are obscured. The intrinsic spectroscopic properties of each are revealed in multicrystalline n‐alkane Shpol'skii matrices, and also can be observed in rigorously purified and dried hydrocarbon glasses at 77 K. The extreme sensitivity to stoichiometric, and even substoichiometric quantities of hydrogen‐bonding impurities arises from the near‐degeneracy of the two lowest‐lying triplet states, and the sensitive nature of the n→π* blueshift phenomena to specific hydrogen‐bonding interactions.  相似文献   
105.
A simple and easy‐to‐implement method is presented for the study of time‐dependent reaction dynamics by propagating an ensemble of transmitted quantum trajectories. During the trajectory evolution, reflected trajectories are gradually removed and all the remaining trajectories represent the transmitted subensemble. The removal process of reflected trajectories avoids numerical instabilities arising from node formation in the reactant region, and allows stable long‐time propagation of transmitted trajectories. This method is applied to a two‐dimensional model chemical reaction. Excellent computational results are obtained for the time‐dependent reaction probabilities evaluated by the time integration of the probability flux. © 2014 Wiley Periodicals, Inc.  相似文献   
106.
The syntheses, structures, and physical properties of dibenzozethrenes were explored. The results thus obtained were compared with those for zethrenes. Dibenzozethrenes were synthesized by the nickel‐catalyzed cyclodimerization of 9‐ethynyl‐1‐iodoanthracenes. The substituents in zethrene and dibenzozethrene twisted their backbones, and remarkably influenced their properties. Unlike closed‐shell disubstituted derivatives, the parent zethrene and dibenzozethrene are singlet open‐shell biradicals, which were studied by variable‐temperature 1H NMR, ESR, SQUID and computational methods. Since substituents were observed to affect significantly the biradical properties, the relevant mechanisms were analyzed. The nonlinear optical performance of each of these compounds depends on its π‐conjugation and biradical properties. Dibenzozethrenes have larger two‐photon absorption cross‐sections than zethrenes, as most strongly evidenced by the parent dibenzothrene [σmax=4323 GM at 530 nm].  相似文献   
107.
ZnO is a defect‐governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect‐related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22 % relative to the bare nanotubes.  相似文献   
108.
Novel UV-curable fluorinated poly(urethane-acrylate) (FPUA) oligomers have been synthesized from 1H,1H,12H,12H-perfluoro-1,12-dodecanediol (PFDDOL), either 1,6-hexamethylene diisocyanate (HDI) or 4,4′-diphenylmethane diisocyanate (MDI), and 2-hydroxyethyl methacrylate (HEMA) for end-capping with photo-crosslinkable methacrylate groups. The fluorine content and the nature of the isocyanate were investigated to determine their effects on the physical properties, surface properties, and blood compatibilities of the polymers. The introduction of hydrophobic fluorocarbon chains led to phase separation and a low total surface energy, which reduced the adhesion of blood platelets onto the materials. The HDI-type UV-curable, fluorinated poly(urethane-acrylate) exhibited a low-surface-energy and superior blood compatibility (as determined from RIPA values).  相似文献   
109.
We report here a nonenzymatic sensor by using a nanoporous platinum electrode to detect glucose directly. The electrode was fabricated by electrochemical deposition and dissolution of PtZn alloy in zinc chloride‐1‐ethyl‐3‐methylimidazolium chloride (ZnCl2‐EMIC) ionic liquid. Both SEM and electrochemical studies showed the evidences for the nanoporous characteristics of the as‐prepared Pt electrodes. Amperometric measurements allow observation of the electrochemical oxidation of glucose at 0.4 V (vs. Ag/AgCl) in pH 7.4 phosphate buffer solution. The sensor also demonstrates significant reproducibility in glucose detection; the higher the roughness factor of the Pt electrode, the lower the detection limit of glucose. The interfering species such as ascorbic acid and p‐acetamidophenol can be avoided by using a Pt electrode with a high roughness factor of 151. Overall, the nanoporous Pt electrode is promising for enzymeless detection of glucose at physiological condition.  相似文献   
110.
This review is to summarize three new QSAR (quantitative structure-activity relationship) methods recently developed in our group and their applications for drug design. Based on more solid theoretical models and advanced mathematical techniques, the conventional QSAR technique has been recast in the following three aspects. (1) In the fragment-based two dimensional QSAR, or abbreviated as FB-QSAR, the molecular structures in a family of drug candidates are divided into several fragments according to the substitutes being investigated. The bioactivities of drug candidates are correlated with physicochemical properties of the molecular fragments through two sets of coefficients: one is for the physicochemical properties and the other for the molecular fragments. (2) In the multiple field three dimensional QSAR, or MF-3D-QSAR, more molecular potential fields are integrated into the comparative molecular field analysis (CoMFA) through two sets of coefficients: one is for the potential fields and the other for the Cartesian three dimensional grid points. (3) In the AABPP (amino acid-based peptide prediction), the bioactivities of peptides or proteins are correlated with the physicochemical properties of all or partial residues of the sequence through two sets of coefficients: one is for the physicochemical properties of amino acids and the other for the weight factors of the residues. Meanwhile, an iterative double least square (IDLS) technique is developed for solving the two sets of coefficients in a training dataset alternately and iteratively. Using the two sets of coefficients, one can predict the bioactivity of a query peptide, protein, or drug candidate. Compared with the old methods, the new QSAR approaches as summarized in this review possess machine learning ability, can remarkably enhance the prediction power, and provide more structural information. Meanwhile, the future challenge and possible development in this area have been briefly addressed as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号