首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3812篇
  免费   54篇
  国内免费   26篇
化学   2583篇
晶体学   59篇
力学   113篇
数学   725篇
物理学   412篇
  2020年   28篇
  2016年   41篇
  2015年   37篇
  2014年   42篇
  2013年   165篇
  2012年   129篇
  2011年   139篇
  2010年   81篇
  2009年   75篇
  2008年   148篇
  2007年   149篇
  2006年   177篇
  2005年   164篇
  2004年   132篇
  2003年   144篇
  2002年   111篇
  2001年   53篇
  2000年   60篇
  1999年   44篇
  1998年   33篇
  1997年   56篇
  1996年   58篇
  1995年   61篇
  1994年   62篇
  1993年   72篇
  1992年   44篇
  1991年   67篇
  1990年   52篇
  1989年   49篇
  1988年   45篇
  1987年   40篇
  1986年   41篇
  1985年   73篇
  1984年   78篇
  1983年   50篇
  1982年   80篇
  1981年   73篇
  1980年   65篇
  1979年   78篇
  1978年   70篇
  1977年   73篇
  1976年   60篇
  1975年   56篇
  1974年   67篇
  1973年   80篇
  1972年   39篇
  1971年   39篇
  1970年   35篇
  1969年   29篇
  1968年   30篇
排序方式: 共有3892条查询结果,搜索用时 78 毫秒
161.
A group additivity method is described which provides heat capacity estimates of the condensed phase. The data base consists of 810 liquids and 446 solids. Group values for carbon in various common substitution and hybridization states and for 47 functional groups are provided. The standard error of estimation using this approach on this data base is 19.5 (liquids) and 26.9 J/ (mole K) (solids). This can be compared to typical experimental uncertainties of 8.12 and 23,4 J/ (mole K) associated with these measurements, respectively. Experimental uncertainties were estimated from the numerical differences obtained for a given substance from multiple independent literature reports.  相似文献   
162.
There are many experiments in which it would be useful to treat a part of the surface or interior of a cell with a biochemical reagent. It is difficult, however, to achieve subcellular specificity, because small molecules diffuse distances equal to the extent of the cell in seconds. This paper demonstrates experimentally, and analyzes theoretically, the use of multiple laminar fluid streams in microfluidic channels to deliver reagents to, and remove them from, cells with subcellular spatial selectivity. The technique made it possible to label different subpopulations of mitochondria fluorescently, to disrupt selected regions of the cytoskeleton chemically, to dislodge limited areas of cell-substrate adhesions enzymatically, and to observe microcompartmental endocytosis within individual cells. This technique does not require microinjection or immobilization of reagents onto nondiffusive objects; it opens a new window into cell biology.  相似文献   
163.
A series of stable complexes, (PMe(3))(3)Ru(SiR(3))(2)(H)(2) ((SiR(3))(2) = (SiH(2)Ph)(2), 3a; (SiHPh(2))(2), 3b; (SiMe(2)CH(2)CH(2)SiMe(2)), 3c), has been synthesized by the reaction of hydridosilanes with (PMe(3))(3)Ru(SiMe(3))H(3) or (PMe(3))(4)Ru(SiMe(3))H. Compounds 3a and 3c adopt overall pentagonal bipyramidal geometries in solution and the solid state, with phosphine and silyl ligands defining trigonal bipyramids and ruthenium hydrides arranged in the equatorial plane. Compound 3a exhibits meridional phosphines, with both silyl ligands equatorial, whereas the constraints of the chelate in 3c result in both axial and equatorial silyl environments and facial phosphines. Although there is no evidence for agostic Si-H interactions in 3a and 3b, the equatorial silyl group in 3c is in close contact with one hydride (1.81(4) A) and is moderately close to the other hydride (2.15(3) A) in the solid state and solution (nu(Ru.H.Si) = 1740 cm(-)(1) and nu(RuH) = 1940 cm(-)(1)). The analogous bis(silyl) dihydride, (PMe(3))(3)Ru(SiMe(3))(2)(H)(2) (3d), is not stable at room temperature, but can be generated in situ at low temperature from the 16e(-) complex (PMe(3))(3)Ru(SiMe(3))H (1) and HSiMe(3). Complexes 3b and 3d have been characterized by multinuclear, variable temperature NMR and appear to be isostructural with 3a. All four complexes exhibit dynamic NMR spectra, but the slow exchange limit could not be observed for 3c. Treatment of 1 with HSiMe(3) at room temperature leads to formation of (PMe(3))(3)Ru(SiMe(2)CH(2)SiMe(3))H(3) (4b) via a CH functionalization process critical to catalytic dehydrocoupling of HSiMe(3) at higher temperatures. Closer inspection of this reaction between -110 and -10 degrees C by NMR reveals a plethora of silyl hydride phosphine complexes formed by ligand redistribution prior to CH activation. Above ca. 0 degrees C this mixture converts cleanly via silane dehydrogenation to the very stable tris(phosphine) trihydride carbosilyl complex 4b. The structure of 4b was determined crystallographically and exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si.HRu interactions are not indicated in the structure or by IR, the HSi distances (2.00(4) - 2.09(4) A) and average coupling constant (J(SiH) = 25 Hz) suggest some degree of nonclassical SiH bonding in the RuH(3)Si moiety. The least hindered complex, 3a, reacts with carbon monoxide principally via an H(2) elimination pathway to yield mer-(PMe(3))(3)(CO)Ru(SiH(2)Ph)(2), with SiH elimination as a minor process. However, only SiH elimination and formation of (PMe(3))(3)(CO)Ru(SiR(3))H is observed for 3b-d. The most hindered bis(silyl) complex, 3d, is extremely labile and even in the absence of CO undergoes SiH reductive elimination to generate the 16e(-) species 1 (DeltaH(SiH)(-)(elim) = 11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(elim) = 40 +/- 2 cal x mol(-)(1) x K(-)(1); Delta = 9.2 +/- 0.8 kcal x mol(-)(1) and Delta = 9 +/- 3 cal x mol(-)(1).K(-)(1)). The minimum barrier for the H(2) reductive elimination can be estimated, and is higher than that for silane elimination at temperatures above ca. -50 degrees C. The thermodynamic preferences for oxidative additions to 1 are dominated by entropy contributions and steric effects. Addition of H(2) is by far most favorable, whereas the relative aptitudes for intramolecular silyl CH activation and intermolecular SiH addition are strongly dependent on temperature (DeltaH(SiH)(-)(add) = -11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(add) = -40 +/- 2 cal.mol(-)(1) x K(-)(1); DeltaH(beta)(-CH)(-)(add) = -2.7 +/- 0.3 kcal x mol(-)(1) and DeltaS(beta)(-CH)(-)(add) = -6 +/- 1 cal x mol(-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta = -1.8 +/- 0.8 kcal x mol(-)(1) and Delta = -31 +/- 3 cal x mol(-)(1).K(-)(1); Delta = 16.4 +/- 0.6 kcal x mol(-)(1) and Delta = -13 +/- 6 cal x mol(-)(1).K(-)(1). The relative enthalpies of activation (-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta (H)SiH(add) = 1.8 +/- 0.8 kcal x mol(-)(1) and Delta S((SiH-add) =31+/- 3 cal x mol(-)(1) x K(-)(1); Delta S (SiH -add) = 16.4 +/- 0.6 kcal x mol(-)(1) and =Delta S (SiH -CH -add) =13+/- 6 cal x mol(-)(1) x K(-)(1). The relative enthalpies of activation are interpreted in terms of strong SiH sigma-complex formation - and much weaker CH coordination - in the transition state for oxidative addition.  相似文献   
164.
The MSR (muonium spin rotation) technique was used to measure the chemical reaction rate for Mu + F2 → MuF + F in N2 moderator at ≈ 1 atm from 295 to 383 K giving the Arrhenius expression: log10k (?/mole s) = (10.83 ± 0.20) - (200 ± 50)/T, with k = (1.46 ± 0.11) × 1010 ?/mole s at 300 K. This is at least 6.8 times the room temperature rate constant for the analogous H atom reaction. The measured activation energy and enhancement over the H reaction rate are indicative of significant tunnelling in the Mu reaction, in agreement with the recent collinear quantum mechanical calculations of Connor et al.  相似文献   
165.
The behavior of (Z)-3-p-tolylsulfinylacrylonitrile (1) as a chiral dienophile has been evaluated from its reactions with furan and acyclic dienes. Electrostatic interactions of the cyano group with the sulfinyl one restrict the conformational mobility around the C-S bond, thus controlling the pi-facial selectivity, which is almost complete in all cases, the approach of the diene from the less-hindered face of the dienophile (that bearing the lone electron pair) in the predominant rotamer being the favored one. The regioselectivity is also completely controlled by the cyano group. Additionally, the reactivity of compound 1 as well as its endo-selectivity are both higher than those observed for the corresponding (Z)-3-sulfinylacrylates, thus proving the potential of sulfinylnitriles as chiral dienophiles.  相似文献   
166.
Xu J  Burton DJ 《Organic letters》2002,4(5):831-833
[reaction: see text] Methodology for the stereoselective preparation of both (E)- and (Z)-alpha-fluoro-alpha,beta-unsaturated esters is described. 1-Bromo-1-fluoroalkenes (E/Z approximate 1:1) can be isomerized to high E/Z ratio mixtures, which participate in palladium-catalyzed carboalkoxylation and lead to (Z)-alpha-fluoro-alpha,beta-unsaturated esters in high stereoselectivity. The same starting material can also be kinetically reduced to get an E/Z ratio of 0:100; similar carboalkoxylation reaction at 70 degrees C affords (E)-alpha-fluoro-alpha,beta-unsaturated esters stereospecifically.  相似文献   
167.
Herein, we report the development of a facile synthetic strategy for constructing diverse peptide structural architectures via chemoselective peptide ligation. The key advancement involved is to utilize the benzofuran moiety as the peptide salicylaldehyde ester surrogate, and Dap–Ser/Lys–Ser dipeptide as the hydroxyl amino functionality, which could be successfully introduced at the side chain of peptides enabling peptide ligation. With this method, the side chain-to-side chain cyclic peptide, branched/bridged peptides, tailed cyclic peptides and multi-cyclic peptides have been designed and successfully synthesized with native peptidic linkages at the ligation sites. This strategy has provided an alternative strategic opportunity for synthetic peptide development. It also serves as an inspiration for the structural design of PPI inhibitors with new modalities.

Methods of introducing peptide salicylaldehyde esters and hydroxyl amine functionality into the peptide side chain have been developed. Diverse peptide structural motifs were constructed via ligation with native amide linkages at the ligation sites.  相似文献   
168.
A generic high-throughput liquid chromatography (HTLC) tandem mass spectrometry (MS/MS) assay for the determination of compound I in human urine and dialysate (hemodialysis) was developed and validated. By using the HTLC on-line extraction technique, sample pretreatment was not necessary. The sample was directly injected onto a narrow bore large particle size extraction column (50 x 1.0 mm, 60 microm) where the sample matrix was rapidly washed away using a high flow rate (5 mL/min) aqueous mobile phase while analytes were retained. The analytes were subsequently eluted from the extraction column onto an analytical column using an organic-enriched mobile phase prior to mass spectrometric detection. The analytes were then eluted from the analytical column to the mass spectrometer for the determination. The linear dynamic range was 2.0-6000 ng/mL for the urine assay and 0.1-300 ng/mL for the dialysate assay. Intraday accuracy and precision were evaluated by analyzing five replicates of calibration standards at all concentrations used to construct the standard curve. For the urine assay, the precision (RSD%, n=5) ranged from 1.9 to 8.0% and the accuracy ranged from 87.8 to 105.2% of nominal value. For the dialysate assay, the precision (RSD%, n=5) ranged from 1.1 to 10.0% and the accuracy from 94.5 to 105.2% of nominal value. In-source fragmentation of the acyl glucuronide metabolite (compound III) did not interfere with the determination of parent compound I. The developed HTLC/MS/MS methodology was specific for compound I in the presence of compound III. Column life-time is increased and sample analysis time is decreased over traditional reversed-phase methods when direct injection assays for urine and dialysate are coupled with the technology of HTLC.  相似文献   
169.
The accuracy of the molecular weights Mn and polydispersities of polymer brushes, determined by stretching the grafted chains using atomic force microscopy (AFM) and measuring the contour length distribution, was evaluated as a function of grafting density sigma. Poly(N,N-dimethylacrylamide) brushes were prepared by surface initiated atom transfer radical polymerization on latex particles with sigma ranging between 0.17 and 0.0059 chains/nm2 and constant Mn. The polymer, which could be cleaved from the grafting surface by hydrolysis and characterized by gel permeation chromatography (GPC), had a Mn of 30,600 and polydispersity (PDI) of 1.35. The Mn determined by the AFM technique for the higher density brushes agreed quite well with the GPC results but was significantly underestimated for the lower sigma. At high grafting density in good solvent, the extended structure of the brush increases the probability of forming segment-tip contacts located at the chain end. When the distance between chains approached twice the radius of gyration of the polymer, the transition from brush to mushroom structure presumably enabled the formation of a larger number of segment-tip contacts having separations smaller than the contour length, which explains the discrepancy between the two methods at low sigma. The PDI was typically higher than that obtained by GPC, suggesting that sampling of chains with above average contour length occurs at a frequency that is greater than their spatial distribution.  相似文献   
170.
The hydrolysis profile of the bifunctional trinuclear phase II clinical agent [(trans-PtCl(NH(3))(2))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2))](4+) (BBR3464, 1) has been examined using [(1)H,(15)N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy. Reported are estimates of the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pK(a1) approximately equal to pK(a2) approximately equal to pK(a3)). The equilibrium constants for the aquation determined by NMR at 298 and 310 K (I = 0.1 M, pH 5.3) are similar, pK(1) = pK(2) = 3.35 +/- 0.04 and 3.42 +/- 0.04, respectively. At lower ionic strength (I = 0.015 M, pH 5.3) the values at 288, 293, and 298 K are pK(1) = pK(2) = 3.63 +/- 0.05. This indicates that the equilibrium is not strongly ionic strength or temperature dependent. The aquation and anation rate constants for the two-step aquation model at 298 K in 0.1 M NaClO(4) (pH 5.3) are k(1) = (7.1 +/- 0.2) x 10(-5) s(-1), k(-1) = 0.158 +/- 0.013 M(-1) s(-1), k(2) = (7.1 +/- 1.5) x 10(-5) s(-1), and k(-2) = 0.16 +/- 0.05 M(-1) s(-1). The rate constants in both directions increase 2-fold with an increase in temperature of 5 K, and rate constants increase with a decrease in solution ionic strength. A pK(a) value of 5.62 plus minus 0.04 was determined for the diaqua species [(trans-Pt(NH(3))(2)(OH(2)))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)-NH(2))(2))](6+) (3). The speciation profile of 1 under physiological conditions is explored and suggests that the dichloro form predominates. The aquation of 1 in 15 mM phosphate was also examined. No slowing of the initial aquation was observed, but reversible reaction between aquated species and phosphate does occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号