首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202070篇
  免费   2216篇
  国内免费   501篇
化学   110613篇
晶体学   3647篇
力学   7997篇
综合类   11篇
数学   19193篇
物理学   63326篇
  2020年   1725篇
  2019年   1920篇
  2018年   2237篇
  2017年   2357篇
  2016年   3517篇
  2015年   2196篇
  2014年   3548篇
  2013年   9084篇
  2012年   6510篇
  2011年   8013篇
  2010年   5702篇
  2009年   5654篇
  2008年   7157篇
  2007年   7069篇
  2006年   6700篇
  2005年   6062篇
  2004年   5521篇
  2003年   5104篇
  2002年   4874篇
  2001年   6141篇
  2000年   4622篇
  1999年   3518篇
  1998年   2747篇
  1997年   2703篇
  1996年   2591篇
  1995年   2440篇
  1994年   2332篇
  1993年   2165篇
  1992年   2826篇
  1991年   2730篇
  1990年   2673篇
  1989年   2690篇
  1988年   2713篇
  1987年   2722篇
  1986年   2591篇
  1985年   3303篇
  1984年   3314篇
  1983年   2598篇
  1982年   2709篇
  1981年   2763篇
  1980年   2533篇
  1979年   2875篇
  1978年   2860篇
  1977年   2980篇
  1976年   2816篇
  1975年   2553篇
  1974年   2509篇
  1973年   2465篇
  1972年   1702篇
  1968年   1703篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
A simple and highly sensitive reagent of salicylaldehyde 3-oxobutanoylhydrazone (salicylaldehyde acetoacetic acid hydrazone, SAAH) was synthesized and studied for the spectrophotometric determination of nickel in detail. In the pH range 6, which greatly increased the selectivity, nickel reacted with SAAH to form a 1:1 yellow complex, having a sensitive absorption peak at 405 nm. Under the optimal conditions, Beer's law was obeyed over the range from 0.0117 to 0.1174 microg cm(-3). The apparent molar absorptivity was 3.025 x 10(5) dm3 mol(-1) cm(-1). The detection limit and the variation coefficient were found to be 1.752 ng cm(-3) and 1.0%, respectively. The method has been applied to the quantitative determination of nickel in different alloys and leaves.  相似文献   
202.
This article presents a new methodology for the quantitative determination of the progress of the curing reaction of a thermosetting resin, using the results of electrical impedance spectroscopy. The method is an extension of the use of the imaginary impedance maximum as a reaction progress indicator and is based on the demonstration of a close correlation between the reaction rate, as measured by conventional differential scanning calorimetry, and the rate of change of the value of the imaginary impedance spectrum maximum. Tests on a commercial aerospace epoxy resin under both isothermal and dynamic heating conditions with calorimetry and impedance spectroscopy have demonstrated the validity of the method and set the accuracy limits involved. This technique can be used as a real-time online control tool for thermoset composite manufacturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 146–154, 2004  相似文献   
203.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   
204.
According to a multiphase mixture theory, we have mathematically developed a multiphysical model with chemoelectromechanical coupling considerations, termed the multieffect‐coupling electric‐stimulus (MECe) model, to simulate the responsive behavior of electric‐sensitive hydrogels immersed in a bath solution under an externally applied electric field. For solutions of the MECe model consisting of coupled nonlinear partial differential governing equations, a meshless Hermite–Cloud method with a hierarchical iteration technique has been used for a one‐dimensional steady‐state analysis of a hydrogel strip. The computed results are compared with the experimental data, and there is very good agreement. Simulations within the domains of both hydrogels and surrounding solutions also present distributions of the ionic concentrations and electric potential as well as the hydrogel displacement. The effects of various physical parameters on the response behavior of electric‐stimulus responsive hydrogels are discussed in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1514–1531, 2004  相似文献   
205.
Some discovery work was done on the synthesis of clay nanocomposites based on renewable plant oils. Functionalized triglycerides, such as acrylated epoxidized soybean oil, maleinized acrylated epoxidized soybean oil, and soybean oil pentaerythritol maleates, combined with styrene were used as the polymer matrix. The miscibility of these monomers and clay organomodifier was assessed by solubility parameters. The formation of nanocomposites was confirmed by both X‐ray data and transmission electron microscopy. The morphology showed a mix of intercalated and partially exfoliated sheets. The flexural modulus increased 30% at only 4 vol % clay content, but there was no significant effect on flexural strength, glass‐transition temperature, and thermal stability. Property enhancement was related to the degree of exfoliation that depends on both the polarity and flexibility of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1441–1450, 2004  相似文献   
206.
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004  相似文献   
207.
Cyanex 923 has been proposed as a sensitive analytical reagent for the direct extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a blue-colored complex with Cyanex 923 in the organic phase. The maximum absorbance of the complex is measured at 635 nm. Beer's law was obeyed in the range 58.9 - 589.0 microg of cobalt. The molar absorptivitiy and Sandell's sensitivity of the complex was calculated to be 6.79 x 10920 l mol(-1) cm(-1) and 0.088 microg cm(-2), respectively. The nature of the extracted species was found to be Co(SCN)2 x 2S. An excellent linearity with a correlation coefficient value of 0.999 was obtained for the Co(II)-Cyanex 923 complex. Stability and regeneration of the reagent (Cyanex 923) for reuse is the main advantage of the present method. The method was successfully applied to the determination of cobalt in synthetic mixtures and pharmaceutical samples was found to give values close to the actual ones. Standard alloy samples, such as high-speed tool BCS 484 and 485, have been tested for the determination of cobalt for the purpose of validating the present method. The results of the proposed method are comparable with atomic absorption spectrometry and were found to be in good agreement.  相似文献   
208.
The photocatalytic degradation of a herbicide derivative, 2,4-dichlorophenoxy acetic acid (2,4-D, 1), has been investigated in aqueous suspensions of titanium dioxide. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic analysis and decrease in Total Organic Carbon (TOC) content as a function of irradiation time in the presence of UV light source. The degradation kinetics was investigated under a variety of conditions, such as different types of TiO2, pH, catalyst and substrate concentrations. Higher photonic efficiencies were observed with Degussa P25 as compared with other photocatalysts. The degradation products were analysed by GC-MS and probable pathways for the formation of different products were proposed.  相似文献   
209.
The local and the terminal velocities, the size and the degree of bubbles’ shape deformations were determined as a function of distance from the position of the bubble formation (capillary orifice) in solutions of n-octyltrimethylammonium bromide, n-octyldimethylphosphine oxide, n-octyl-β-D-glucopyranoside and n-octanoic acid.

These surface-active compounds have different polar groups but an identical hydrocarbon chain (C8) in the molecule. The motion of the bubbles was monitored and recorded using a stroboscopic illumination, a CCD camera, and a JVC professional video. The recorded bubble images were analyzed by the image analysis software. The bubbles accelerated rapidly and their shape was deformed immediately after detachment from the capillary. The extent of the bubbles’ shape deformation (ratio of horizontal and vertical diameters) was 1.5 in distilled water and dropped rapidly down to a level of ca. 1.05–1.03 with increasing surfactant concentration. After the acceleration period the bubbles either attained a constant value of the terminal velocity (distilled water and high concentrations of the solutions), or a maximum in the velocity profiles was observed (low concentrations). The values of the terminal velocity diminished drastically with increasing concentration, from the value of 35 cm/s in water down to about 15 cm/s, while the bubble diameter decreased by ca. 10% only. The surfactant adsorption at the surface of the bubbles was evaluated and the minimum adsorption coverages required to immobilize the bubbles’ surface were determined. It was found that this minimum adsorption coverage was ca. 4% for n-octyldimethylphosphine oxide, n-octyl-β-D-glucopyranoside, n-octanoic acid and 25% for n-octyltrimethylammonium bromide. The difference in the adsorption coverage together with the surfactants’ surface activities indicate that it is mainly the adsorption kinetics of the surfactants that governs the fluidity of interfaces of the rising bubbles.  相似文献   

210.
There is a current need for alternative coatings that can provide corrosion resistance to metals or alloy surfaces due to the environmental hazards posed by conventional coatings. Herein, we report on novel organically-modified sol–gel coatings for the protection of metal and alloy surfaces. The basic concept of chemical conversion of metal surfaces is based on deposition of a hydrophobic, nonporous sol–gel barrier layer for surface protection and corrosion prevention. The properties of these organosilica coatings can be tuned by varying the composition of precursors. The evaluation of hydrophobicity, adhesive strength, and anticorrosion properties of organically-modified sol–gel derived coatings suggests their potential utility as technologically-compatible alternatives to conventional coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号