首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4842篇
  免费   173篇
  国内免费   13篇
化学   2897篇
晶体学   90篇
力学   158篇
数学   338篇
物理学   1545篇
  2023年   44篇
  2022年   82篇
  2021年   87篇
  2020年   103篇
  2019年   101篇
  2018年   120篇
  2017年   89篇
  2016年   145篇
  2015年   110篇
  2014年   170篇
  2013年   273篇
  2012年   366篇
  2011年   349篇
  2010年   202篇
  2009年   183篇
  2008年   221篇
  2007年   207篇
  2006年   199篇
  2005年   157篇
  2004年   121篇
  2003年   117篇
  2002年   100篇
  2001年   76篇
  2000年   62篇
  1999年   57篇
  1998年   32篇
  1997年   57篇
  1996年   65篇
  1995年   46篇
  1994年   76篇
  1993年   82篇
  1992年   83篇
  1991年   52篇
  1990年   53篇
  1989年   60篇
  1988年   38篇
  1987年   42篇
  1986年   40篇
  1985年   35篇
  1984年   35篇
  1983年   38篇
  1982年   40篇
  1981年   51篇
  1980年   41篇
  1979年   33篇
  1978年   27篇
  1977年   34篇
  1975年   24篇
  1974年   28篇
  1973年   33篇
排序方式: 共有5028条查询结果,搜索用时 15 毫秒
901.
In a coalescence plus fragmentation approach we calculate the heavy baryon/meson ratio and the \(p_T\) spectra of charmed hadrons \(D^{0}\), \(D_{s}\) and \(\varLambda _{c}^{+}\) in a wide range of transverse momentum from low \(p_T\) up to about 10 GeV and discuss their ratios from RHIC to LHC energies without any change of the coalescence parameters. We have included the contribution from decays of heavy hadron resonances and also the one due to fragmentation of heavy quarks which do not undergo the coalescence process. The coalescence process is tuned to have all charm quarks hadronizing in the \(p_T\rightarrow 0\) limit and at finite \(p_T\) charm quarks not undergoing coalescence are hadronized by independent fragmentation. The \(p_T\) dependence of the baryon/meson ratios are found to be sensitive to the masses of coalescing quarks, in particular the \(\varLambda _{c}/D^{0}\) can reach values of about \(\mathrm 1\div 1.5 \) at \(p_T \approx \, 3\) GeV, or larger, similarly to the light baryon/meson ratio like \(p/\pi \) and \(\varLambda /K\), however a marked difference is a quite weak \(p_T\) dependence with respect to the light case, such that a larger value at intermediate \(p_T\) implies a relatively large value also for the integrated yields. A comparison with other coalescence model and with the prediction of thermal model is discussed.  相似文献   
902.
In this study, the modified Kudryashov method is used to construct new exact solutions for some conformable fractional differential equations. By implementing the conformable fractional derivative and compatible fractional complex transforms, the fractional generalized reaction duffing (RD) model equation, the fractional biological population model and the fractional diffusion reaction (DR) equation with quadratic and cubic nonlinearity are discussed. As an outcome, some new exact solutions are formally established. All solutions have been verified back into its corresponding equation with the aid of maple package program. We assure that the employed method is simple and robust for the estimation of the new exact solutions, and practically capable for reducing the size of computational work for solving a various class of fractional differential equations arising in applied mathematics, mathematical physics and biology.  相似文献   
903.
Das  Avirup  Thakur  A. K. 《Ionics》2017,23(10):2845-2853

Polymer nanocomposite has been proven to improve the property of polymer salt complex. Organo-modified clay and inorganic oxides are the most commonly used filler for polymer nanocomposite (PNC). However, single wall carbon nanotube (SWCNT)/multiwall carbon nanotube (MWCNT) are becoming popular filler for PNC for their high surface area and high mechanical stability. In this work, a series of PNC sample has been prepared by using polyethylene oxide (PEO)-polydimethylsiloxane (PDMS) blend as polymer matrix, an optimized salt stoichiometry of Ö/Li ~15, and surface-modified MWCNT as filler. The effect of ion-polymer and ion-MWCNT interaction in the polymer nanocomposite has been investigated by using XRD, SEM, FTIR, and electrical study. X-ray diffraction pattern confirms the dispersion of MWCNT inside the polymer chain and modifies the structural parameter of the polymer matrix. FTIR spectra indicate inclusion of MWCNT inside the polymer salt complex which changes the ion dissociation/association in the polymer host matrix. Further, the changes in structural, thermal, and electrical property of the polymer salt complex system have been studied by using SEM, DSC, and impedance analysis. Dc conductivity study shows that optimized PNC sample has conductivity of 8.04 × 10−5 S cm−1. This is almost two order enhancement from pure polymer salt system (10−6 S cm−1).

  相似文献   
904.
We present an analysis of the xF3(x,Q2) structure function and Gross-Llewellyn Smith(GLS) sum rule taking into account the nuclear effects and higher twist correction. This analysis is based on the results presented in[N.M. Nath, et al., Indian J. Phys. 90 (2016) 117]. The corrections due to nuclear effects predicted in several earlier analysis are incorporated to our results of xF3(x,Q2) structure function and GLS sum rule for free nucleon, corrected upto next-next-to-leading order (NNLO) perturbative order and calculate the nuclear structure function as well as sum rule for nuclei. In addition, by means of a simple model we have extracted the higher twist contributions to the non-singlet structure function xF3(x,Q2) and GLS sum rule in NNLO perturbative orders and then incorporated them to our results. Our NNLO results along with nuclear effect and higher twist corrections are observed to be compatible with corresponding experimental data and other phenomenological analysis.  相似文献   
905.
Fast ion conducting (FIC) phosphate glasses have become very important due to a wide range of applications in solid-state devices. We present an overview on silver based fast ion conducting phosphate glasses. Silver phosphate glasses containing chlorides of some metals viz; Li, Na, Mg, Pb and Cu [Ag2O–P2O5xMCly, where x = 0, 1, 5, 10 and 15 wt% and y = 1 when M = Li or Na and y = 2 when M = Mg, Pb or Cu] have been synthesized by melt quenching technique. Studies on these glassy materials characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetric techniques and ion transport measurements are presented. The FT-IR studies support the formation of P–O–M linkages. The values of glass transition temperature (Tg) of the glassy materials containing lithium or sodium chloride have been found to decrease with increasing dopant concentrations indicating expansion of the glassy network. On the other hand, the Tg values increase with increasing magnesium, lead or copper chloride concentrations in silver phosphate glasses. This indicates an increase in cross–link density and enhanced chemical durability of these glassy materials. Ion transport studies suggest that the values of electrical conductivities of the metal chloride doped glassy materials are higher than those of the undoped ones and, at a particular dopant concentration, the following trend is observed.σ (–LiCl)  σ (–NaCl) > σ (–MgCl2) > σ (–PbCl2) > σ (–CuCl2)These results are supported by the experimental results of FT-IR spectral and thermal studies.  相似文献   
906.
Adsorptions of small toxic molecules such as CO, N2, HCN, SO2, H2CO, and NH3 on a single‐walled (6,0) SnC nanotube (SnCNT) are investigated using Quantum Mechanics/Molecular Mechanics (QM/MM) methodology. The calculations are carried out at the B3LYP/6‐311++G(d,p)//LANL2DZ:UFF level of theory. The high layer of the model consists of a pyrene‐type ring on the nanotube surface as the adsorption site, where one gas molecule is allowed to interact. Conversely, for the adsorption of the two molecules, a larger site like a coronene ring is used for the high layer. Adsorption energy, Gibbs free energy change, Mulliken charge transfer, and total electron‐density maps are computed in each case. The adsorption strength of the gas molecule on the SnCNT surface is also analyzed from the density of states projected to different atoms (PDOS) of the nanotube–adsorbate complexes. The adsorptions of CO and N2 on the (6,0) SnCNT surface require to cross potential barriers, and the corresponding transition structures are identified by ONIOM‐IRC calculations. For the remaining four molecules, the processes of adsorption are predicted to be barrier‐less. The calculations for the adsorption of H2CO on (5,0) and (7,0) SnCNT surfaces are extended to study the effect of the size of the nanotube. Results for the adsorption of a single molecule on (6,0) SnCNT using B3LYP functional are compared with those obtained from a dispersion corrected functional such as M06‐2X. © 2015 Wiley Periodicals, Inc.  相似文献   
907.
Rotational diffusion of two organic solutes, coumarin153 (C153) and 4-aminophthalimide (AP) has been investigated in four ionic liquids (ILs), viz. 1-ethyl-3-methylimidazolium trifluoroacetate (EMIMTFA), 1-ethyl-3-methylimidazolium ethylsulfate (EMIMESU), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMTFB) and 1-ethyl-3-methylimidazolium tetracyanoborate (EMIMTCB), as a function of temperature. Between the two probes, AP can act as hydrogen-bond-donor to the solvents having hydrogen bond acceptor ability. The results indicate that the rotational dynamics of C153 is mainly governed by the viscosity of the medium. On the other hand, the rotational motion of AP is found to be significantly hindered in the ILs depending on the nature of anions of the ILs. Rotational coupling constant values for AP in the ILs follow the order TFA?>?ESU?>?TCB?>?TFB. The slower rotational motion of AP in these ILs has been attributed to the specific hydrogen bonding interaction between AP and anions of ILs.
Figure
Rotational diffusion of two organic solutes, coumarin153 (C153) and 4-aminophthalimide (AP) has been investigated in four different ionic liquids (ILs) so as to monitor the effects of anions on the rotational dynamics of the solutes exclusively. Figure showing the anisotropy decay profile of AP at 293 K in two isoviscous room temperature ionic liquids having different hydrogen bond acceptors ability  相似文献   
908.
Three new ferrocene based Schiff bases 4-{[(E)-ferrocenylmethylidene] amino}benzenethiol (1b), 3-{[(E)-ferrocenylmethylidene]amino} benzenethiol (1c), 2-{[(E)-ferrocenylmethylidene]amino} benzenethiol (1d) have been synthesized to study their sensor property to various metal ions. It has been observed that 1b is highly fluorescent and its fluorescence changes in presence of metal ions. It was further observed that compound 1b is highly selective towards Cd2+ ion in solution.  相似文献   
909.
Nanoparticles of cadmium selenide (CdSe) have been synthesized by soft chemical route using mercaptoethanol as a capping agent. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to sphalerite structure with the average particle size of 25 nm. The band gap of the material is found to be 2.1 eV. The photoluminescence (PL) emission spectra of the sample are measured at various excitation wavelengths. The PL spectra appear in the visible region, and the emission feature depends on the wavelength of the excitation. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 323 to 473 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). The dielectric relaxation of the sample is investigated in the electric modulus formalism. The temperature dependent relaxation times obey the Arrhenius law. The Havriliak–Negami model is used to investigate the dielectric relaxation mechanism in the sample. The frequency dependent conductivity spectra are found to obey the power law.  相似文献   
910.
The formulated ABCD matrix formalism is employed to prescribe analytical expression of coupling efficiency of a laser diode to single-mode circular core dispersion-shifted as well as dispersion-flattened fiber via hyperbolic microlens on the tip of the fiber. We assume that field distribution in case of both the source and the fiber is one parameter Gaussian type. For maximum excitation efficiency, it is required that the lens transmitted spot size of the source should match with the spot size of the fiber. Further, as regards the spot size of the fiber, we use Petermann II spot size in order to take care of non Gaussian nature of field of such fibers and to make the estimations more realistic thereby. The investigations are carried out for two different wavelengths 1.3 and 1.5 μm. Our simple method predicts the concerned coupling optics excellently and the necessary evaluations require little computations. This simple but accurate technique is expected to benefit the system designers who work in the field of optical technology.  相似文献   
[首页] « 上一页 [86] [87] [88] [89] [90] 91 [92] [93] [94] [95] [96] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号