首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   2篇
力学   3篇
数学   2篇
物理学   18篇
  2020年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1967年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
A correlation technique is tested, which enables the identification of flow structures that are involved in sound generation processes. At first, the method is applied to the problem of induced noise from flow over a cylinder. The velocity field around a circular cylinder is measured by particle image velocimetry (PIV), while the radiated sound is recorded with a microphone. Both measurements are conducted in a synchronized manner so as to enable the calculation of the cross-correlation between velocity or vorticity fluctuations and the acoustic pressure. The therewith obtained coefficient matrix provides time- and space-resolved information about the statistical dependency between flow structures and the acoustic pressure. Furthermore, a proper orthogonal decomposition (POD) is applied to the velocity field. Then the correlation between dominating modes and the acoustic pressure is computed to identify which modes are mainly involved in the sound generation. Finally, the developed method is applied to the more applied problem of the flow-field inside a leading-edge slat-cove. The results show that, in this case, the signal-to-noise ratio is too low to allow an identification of noise-relevant flow structures, as opposed to the case of the cylinder wake flow, where 5,000 PIV recordings were sufficient to identify the flow structures, which are involved in the noise-generation process. A maximum in spatial distribution of the cross-correlation coefficient is observed 1.6 diameters downstream of the cylinder; its value decreases as one moves further downstream. In this area of maximal correlation, a rapid acceleration of the released vortices takes place. The cross-correlation coefficient fluctuates over time in a sine-type oscillation with maximum values of about and show a periodic behavior with a phase shift of π/2 with respect to each other. These regular oscillations can be explained by coherent periodic structures in the flow-field. These structures generate a sound field with the same periodicity, which is perceived as tone. Hence, the correlation between the velocity fluctuations and the acoustic pressure show oscillations identical to those of the input signals. A filtering of uncorrelated noise can be observed; this being caused by the averaging process during the cross-correlation calculation. The correlation with the eigenmodes of a POD gives correlation coefficients, which are no larger than the correlation with a local near-field quantity.  相似文献   
12.
The p-state mean-field Potts glass with bimodal bond distribution (±J) is studied by Monte Carlo simulations, both for p = 3 and p = 6 states, for system sizes from N = 5 to N = 120 spins, considering particularly the finite-size scaling behavior at the exactly known glass transition temperature T c. It is shown that for p = 3 the moments q (k) of the spin-glass order parameter satisfy a simple scaling behavior, being the appropriate scaling function and T the temperature. Also the specific heat maxima have a similar behavior, , while moments of the magnetization scale as . The approach of the positions T max of these specific heat maxima to T c as N is nonmonotonic. For p = 6 the results are compatible with a first-order transition, q (k) (q jump)k as N but since the order parameter q jump at T c is rather small, a behavior q (k) N -k/3 as N also is compatible with the data. Thus no firm conclusions on the finite-size behavior of the order parameter can be drawn. The specific heat maxima c V max behave qualitatively in the same way as for p = 3, consistent with the prediction that there is no latent heat. A speculative phenomenological discussion of finite-size scaling for such transitions is given. For small N (N 15 for p = 3, N 12 for p = 6) the Monte Carlo data are compared to exact partition function calculations, and excellent agreement is found. We also discuss ratios , for various quantities X, to test the possible lack of self-averaging at T c.  相似文献   
13.
We performed DFWM spectroscopy on X –1+A 1+ transitions in NaH produced in an indirect photochemical reaction between Na(3p) and H2 and detected v=1, 2 and 3 ground state vibrational levels of NaH molecules, whereas with resonance enhanced CARS, we observed v=0 levels only. This different sensitivity can be explained by considering the Franck-Condon-factors and the relevant damping coefficients for the corresponding transitions in the NaH molecule. Time resolved DFWM spectroscopy showed that NaH(v=1) molecules effectively live much longer than Na(3p) atoms which merely follow the laser excitation pulse.  相似文献   
14.
15.
Synchrotron-based micro-X-ray absorption spectroscopy is used in the present study to obtain chemical information at the microscopic scale such as coordination and oxidation state of Fe atoms in phases constituting corrosion products within archaeological iron artefacts buried in soil. This technique is required in order to answer questions about the iron corrosion process related to the presence of chloride, particularly for restoration and conservation of metallic artefacts of the cultural heritage. The samples available for X-ray microprobe analyses are cross sections from corroded iron archaeological objects. Previously, complementary techniques have been used such as μXRD and μRaman. This specific study applies micro-X-ray absorption spectroscopy to determine the spatial variation of the predominant Fe oxidation state and to identify the corresponding crystallographic phase. The analyses performed at Fe and Cl K-edges (μXANES) reveal the correlation between the valence distribution in the corrosion products and the evolution of the chloride concentration. In addition to the presence of the well-known iron oxyhydroxide β-FeOOH: akaganeite, we highlight the presence of another important phase, the β-Fe2(OH)3Clhydroxychloride. These important findings help to gain new insights concerning the influence of such phases in the iron corrosion mechanism within their precise characterization. PACS 61.10.Ht; 61.10.-i; 68.49.Uv  相似文献   
16.
 The density field of cylindrical supersonic jets is investigated by Mach-Zehnder interferometry. The optical phase shift is extracted from the interferograms by digital image processing. Disturbing turbulence effects in the free shear layer are eliminated by sequential averaging of the phase shifts of several experimental images. The resulting steady state phase shift is used to calculate time-averaged interferograms and to reconstruct the density field by computerized tomography. The obtained results are compared with theoretical predictions and good quantitative agreement is found. Received: 3 March 1997/Accepted: 3 October 1997  相似文献   
17.
The preservation of bronze and copper heritage objects is challenging. Exposure to water or pollution in outdoor conditions leads to corrosion phenomena, which can highly degrade the objects or structures. We aim to develop an alternative nontoxic corrosion inhibiting treatment, based on the use of a carboxylate (HC10) treatment. Electron spectroscopies (X-ray photoelectron spectroscopy and scanning Auger microscopy) are used to determine, from micrometric to nanometric scale, the composition and chemical environments (oxidation degrees) of the copper compounds commonly found in the corrosion product layer. In the present study, we focus on the evaluation of X-ray beam irradiation damage when performing surface analysis on cuprite, brochantite, and Cu decanoate reference samples. The reduction phenomenon has already been reported, especially for Cu(II) compounds, but not clearly explained. Different behavior has been observed depending on the X-ray source used, and the nature and hydration level of the compounds. The photoreduction issue is critical, as it guarantees the reliability of the chemical information obtained and sheds light on the best analysis pathway to adopt when multitechnique analyses are implemented. An analytical procedure is employed to track the reduction of Cu(II) reference samples during XPS analysis evidencing practically instantaneous modifications of the spectra and thus, the instability of these phases except for the dehydrated cuprite sample.  相似文献   
18.
In several contexts such as cultural heritage, oil and gas or nuclear waste disposal, the long‐term corrosion mechanisms of iron in anoxic soils are studied. For this purpose, corrosion layers formed on ferrous archaeological artefacts from the site of Glinet (16th century, Normandy, France) were characterised. The main phases identified are siderite (FeCO3), chukanovite (iron hydroxycarbonate: Fe2(OH)2CO3 and magnetite (Fe3O4). In order to provide reliable Raman references for further studies on carbonated systems, the iron hydroxycarbonate (chukanovite) was synthesised on iron discs. The corrosion mechanisms were investigated by re‐corroding the archaeological samples in a deuterated solution. Raman characterisation on cross sections inside the layer revealed the presence of deuterated chukanovite, allowing the deuterium tracing of the spreading of the corrosion. A set of chukanovite samples was synthesised with various D/H ratios. Using these reference data, the proportion of deuterated chukanovite in re‐corroded artefacts was evaluated, and the corrosion rate was estimated as less than 1.6 µm/year. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
19.
Production yields and β-decay half-lives (T 1/2) of very neutron-rich indium isotopes were determined at CERN/ISOLDE using isobaric selectivity of a resonance-ionization laser ion-source. Beta-delayed neutron (βdn) multiscaling measurements have yielded improved T 1/2 for 206(6) ms 132In, 165(3) ms 133In and 141(5) ms 134In. With 92(10) ms 135In, a new r-process nuclide has been identified which acts as an important “waiting point” in the In isotopic chain for neutron densities in the range n n≃ 1024-1026 n/cm3, where the r-matter flow has already passed the A≃ 130 abundance peak region. Received: 17 January 2002 / Accepted: 30 January 2002  相似文献   
20.
High-resolution magic angle spinning (HRMAS) has become an extremely versatile tool to study heterogeneous systems. HRMAS relies on magic angle spinning of the sample and on pulse sequences originally developed for liquid state NMR. In most cases the outcome of the experiment is conform to what is expected from high-resolution liquid state NMR spectroscopy. However in some instances, experiments run under MAS can produce some very puzzling results. After reviewing the basic hardware which is at the heart of HRMAS spectroscopy, we show that the origin of this behavior lies in the natural time-dependence of some physical quantities imparted by the rotation. We focus in particular on the effects of B1 inhomogeneities on the nutation, the (90 degrees)+x-t-(90 degrees )-x and the MLEV16 experiments. Different models of radiofrequency distribution of B1 fields in a solenoidal coil are derived from simple geometrical considerations. These models are shown by NMR spin dynamics calculations to reproduce the experimental NMR results. They are also consistent with electromagnetic simulations of the B1 field distribution inside a solenoidal coil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号