首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   8篇
化学   119篇
晶体学   6篇
力学   2篇
数学   4篇
物理学   32篇
  2023年   5篇
  2022年   7篇
  2021年   3篇
  2020年   10篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   1篇
  2013年   7篇
  2012年   13篇
  2011年   16篇
  2010年   5篇
  2009年   6篇
  2008年   15篇
  2007年   10篇
  2006年   4篇
  2005年   8篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   6篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
101.
The structure, bonding and energetics of B(2)AlH(n)(m) (n = 3-6, m = -2 to +1) are compared with corresponding homocyclic boron, aluminum analogues and BAl(2)H(n)(m) using density functional theory (DFT). Divalent to hexacoordinated boron and aluminum atoms are found in these species. The geometrical and bonding pattern in B(2)AlH(4)(-) is similar to that for B(2)SiH(4). Species with lone pairs on the divalent boron and aluminum atoms are found to be minima on the potential energy surface of B(2)AlH(3)(2-). A dramatic structural diversity is observed in going from B(3)H(n)(m) to B(2)AlH(n)(m), BAl(2)H(n)(m) and Al(3)H(n)(m) and this is attributable to the preference of lower coordination on aluminum, higher coordination on boron and the higher multicenter bonding capability of boron. The most stable structures of B(3)H(6)(+), B(2)AlH(5) and BAl(2)H(4)(-) and the trihydrogen bridged structure of Al(3)H(3)(2-) show an isostructural relationship, indicating the isolobal analogy between trivalent boron and divalent aluminum anion.  相似文献   
102.
Radical copolymerization of fullerene (C60) and n‐butyl methacrylate (BMA) has been carried out using triphenylbismuthonium ylide as an initiator at 70°C for 4 h in a dilatometer under nitrogen atmosphere. The kinetic expression of the polymerization is Rpα [Ylide]0.5[C60]?1.0[BMA]1.2, which is similar to that expected for ideal kinetics. The rate of polymerization increases with an increase in the concentration of initiator and BMA. However, it decreases with an increase in the concentration of fullerene. Fullerene acts as radical scavengers causing retardation in polymerization. The activation energy of copolymerization was estimated to be 72.2 K J mol?1. The fullerene‐containing BMA copolymers were characterized by FTIR, 1H NMR, 13C NMR, UV–vis, and GPC analyses. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 608–619, 2011  相似文献   
103.
Iron(III) complexes [FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido[3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido[3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido[3,2-a:2',3'-c]phenazine (dppza in 4) and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about -0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex [FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO(?) radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC(50) value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAPI nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.  相似文献   
104.
Nanoscience is now an expanding field of research and finds potential application in biomedical area, but it is limited due to lack of comprehensive knowledge of the interactions operating in nano-bio system. Here, we report the studies on the interaction and formation of nano-bio complex between silver nanoparticle (AgNP) and human blood protein hemoglobin (Hb). We have employed several spectroscopic (absorption, emission, Raman, FTIR, CD, etc.) and electron diffraction techniques (FE-SEM and HR-TEM) to characterize the Hb-AgNP complex system. Our results show the Hb-AgNP interaction is concentration and time dependent. The AgNP particle can attach/come closer to heme, tryptophan, and amide as well aromatic amine residues. As a result, the Hb undergoes conformational change and becomes unfolded through the increment of β-sheet structure. The AgNP-Hb can form charge-transfers (CT) complex where the Hb-heme along with the AgNP involved in the electron transfer mechanism and form Hb-AgNP assembled structure. The electron transfer mechanism has been found to be dependent on the size of silver particle. The overall study is important in understanding the nano-bio system and in predicting the avenues to design and synthesis of novel nano-biocomposite materials in material science and biomedical area.  相似文献   
105.
Here, we report the glycosylation of human adult hemoglobin (Hb) studied in aqueous solution and at the air-water interface by the Langmuir-Blodgett (LB) technique. Pressure-area (π-A) and pressure-time (π-t) measurements show that the concentration of glucose (GLC) and interaction time have an effect on Hb molecular area as well as on surface activity. Solution studies by UV-vis absorption and emission spectroscopy show that the GLC can alter the local conformation of Hb to some extent at the tryptophan and heme residues. CD spectroscopic studies in solution indicate that the α-helix content increases in the presence of GLC at the secondary structure level, which may be the cause of an increased adsorption rate of Hb. Also, secondary structure calculation using FTIR technique in the LB film follows the decrease in α-helix and increase in β-sheet structure as well as the formation of intermolecular aggregates. AFM images of Hb in the LB film indicate the transition from globular to an ellipsoid-like structure of Hb in the presence of GLC. FTIR studies of the LB film support the AFM imaging and the analysis of π-t kinetics. The molecular docking study revealed that Val 1 and Lys 132 are the most favorable docked sites along with some other sites such as Hem 147, Trp 37, Asp 94, Tyr 145, Leu 91, His 143, Glu 43 etc. The overall study may predict the processes of interactions with the increased concentration of GLC on Hb as well as on other long lived proteins.  相似文献   
106.
We present here a versatile computational code named “elecTric fIeld generaTion And maNipulation (TITAN),” capable of generating various types of external electric fields, as well as quantifying the local (or intrinsic) electric fields present in proteins and other biological systems according to Coulomb's Law. The generated electric fields can be coupled with quantum mechanics (QM), molecular mechanics (MM), QM/MM, and molecular dynamics calculations in most available software packages. The capabilities of the TITAN code are illustrated throughout the text with the help of examples. We end by presenting an application, in which the effects of the local electric field on the hydrogen transfer reaction in cytochrome P450 OleTJE enzyme and the modifications induced by the application of an oriented external electric field are examined. We find that the protein matrix in P450 OleTJE acts as a moderate catalyst and that orienting an external electric field along the Fe─O bond of compound I has the biggest impact on the reaction barrier. The induced catalysis/inhibition correlates with the calculated spin density on the O-atom. © 2019 Wiley Periodicals, Inc.  相似文献   
107.
Copolymerization of fullerene (C60) with methyl methacrylate (MMA) was carried out using triphenylbismuthonium ylide (abbreviated as Ylide) as a novel initiator in dioxan at 60°C for 4 h in a dilatometer under a nitrogen atmosphere. The reaction follows ideal kinetics: Rp∝ [Ylide]0.5[C60]?1.0[MMA]1.0. The rate of polymerization increases with an increase in concentration of initiator and MMA. However, it decreases with increasing concentration of fullerene due to the radical scavenging effect of fullerene. The overall activation energy of copolymerization was estimated to be 57 KJ mol?1. The fullerene-MMA copolymers (C60-MMA) were characterized by FTIR, UV–Vis, NMR and GPC analyses.  相似文献   
108.
The interaction of proteins with endotoxins has divergent effects on lipopolysaccharide (LPS)‐induced responses, which serve as a basis for many clinical and therapeutic applications. It is, therefore, important to understand these interactions from both theoretical and practical points of view. This paper advances the design of liquid crystal (LC)‐based stimuli‐responsive soft materials for quantitative measurements of LPS–protein binding events through interfacial ordering transition. Micrometer‐thick films of LCs undergo easily visualized ordering transitions in response to proteins at LPS–aqueous interfaces of the LCs. The optical response of the LC changes from dark to bright after aqueous solutions of hemoglobin (Hb), bovine serum albumin (BSA), and lysozyme proteins (LZM) are in contact with a LPS‐laden aqueous–LC interface. The effects of interactions of different proteins with LPS are also observed to cause the response of the LC to vary significantly from one to another; this indicates that manipulation of the protein–LPS binding affinity can provide the basis for a general, facile method to tune the LPS‐induced responses of the LCs to interfacial phenomena. By measuring the optical retardation of the 4′‐pentyl‐4‐cyanobiphenyl (5CB) LC, the binding affinity of the proteins (Hb, BSA, and LZM) towards LPS that leads to different orientational behavior at the aqueous interfaces of the LCs can be determined. The interaction of proteins with the LPS‐laden monolayer is highest for LPS–Hb, followed by LPS–BSA, and least for LPS–LZM; this is in correlation with their increasing order of binding constants (LPS‐Hb>LPS‐BSA>LPS‐LZM). The results presented herein pave the way for quantitative and multiplexed measurements of LPS–protein binding events and reveal the potential of the LC system to be used as quantitative LC‐based, stimuli‐responsive soft materials.  相似文献   
109.
The present study reports the development of a unique class of Cytochrome C (CytC)‐loaded cross‐beta amyloid nanohybrids. The peroxidase activity of the bound CytC increased up to two orders of magnitude in organic solvents compared to the activity of unbound CytC in water. The amyloid sequences used in the study feature the nucleating core 17LVFF21 of the beta amyloid (Aβ), which assembled to form homogenous fibers and nanotubes. The morphology and exposed surface of the amyloid nanohydrids critically modulated the CytC activity. A CytC–Ac‐KLVFFAE‐NH2 hybrid featuring nanofiber morphology showed 308‐fold higher activity than unbound CytC in water, which increased to 450‐fold with the nanotube morphology of CytC–Ac‐KLVFFA L ‐NH2. Notably, activity declined substantially when the exposed surface charge was detuned by replacing lysine with histidine, thus underpinning the importance of surface charge. This enzyme–amyloid nanohybrid system could facilitate the technological application of enzymes.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号