首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   8篇
  国内免费   1篇
化学   241篇
晶体学   24篇
力学   6篇
数学   43篇
物理学   58篇
  2023年   2篇
  2022年   8篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   8篇
  2015年   9篇
  2014年   7篇
  2013年   23篇
  2012年   15篇
  2011年   17篇
  2010年   9篇
  2009年   12篇
  2008年   13篇
  2007年   14篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   11篇
  2001年   15篇
  2000年   42篇
  1999年   54篇
  1998年   10篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   8篇
  1993年   3篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1937年   1篇
排序方式: 共有372条查询结果,搜索用时 0 毫秒
91.
Uncovering the mechanisms that allow conjugates of ubiquitin (Ub) and/or Ub‐like (UBL) proteins such as Rub1 to serve as distinct molecular signals requires the ability to make them with native connectivity and defined length and linkage composition. A novel, effective, and affordable strategy for controlled chemical assembly of fully natural UBL–Ub, Ub–UBL, and UBL–UBL conjugates from recombinant monomers is presented. Rubylation of Ub and Rub1 and ubiquitination of Rub1 was achieved without E2/E3 enzymes. New residue‐specific information was obtained on the interdomain contacts in naturally‐occurring K48‐linked Rub1–Ub and Ub–Rub1, and K29‐linked Rub1–Ub heterodimers, and their recognition by a K48‐linkage‐specific Ub receptor. The disassembly of these heterodimers by major deubiquitinating enzymes was examined and it was discovered that some deubiquitinases also possess derubylase activity. This unexpected result suggests possible crosstalk between Ub and Rub1/Nedd8 signaling pathways.  相似文献   
92.
Human placental ribonuclease inhibitor (hRI) containing six tryptophan (Trp) residues located at positions 19, 261, 263, 318, 375, and 438 and its complex with RNase A have been studied using steady-state and time-resolved fluorescence (298 K) as well as low-temperature phosphorescence (77 K). Two Trp residues in wild-type hRI and also in the protein-protein complex with RNase A are resolved optically. The accessible surface area values of Trp residues in the wild-type hRI and its complex and consideration of inter-Trp energy transfer in the wild-type hRI reveal that one of the Trp residues is Trp19, which is located in a hydrophobic buried region. The other Trp residue is tentatively assigned as Trp375 based on experimental results on wild-type hRI and its complex. This residue in the wild-type hRI is more or less solvent exposed. Both the Trp residues are perturbed slightly on complex formation. Trp19 moves slightly toward a more hydrophobic region, and the environment of Trp375 becomes less solvent exposed. The complex formation also results in a more heterogeneous environment for both the optically resolved Trp residues.  相似文献   
93.
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4? anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O—H?O hydrogen bonds involving the water mol­ecules, and intermolecular O—H?N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O—H?O and N—H?N, and intermolecular O—H?N, N—H?O and N—H?N hydrogen bonds form a three‐dimensional framework.  相似文献   
94.
The title compound, C18H12N4O·H2O, adopts the keto tautomeric form and the azomethine C=N double bond is in the E configuration. The dihedral angle between the planes of the di­aza­fluorene moiety and the phenyl ring is 11.3 (1)°. In the solid state, the mol­ecules form infinite chain‐like structures via O—H?N hydrogen bonds involving the water mol­ecules and di­aza­fluorene moieties.  相似文献   
95.
In the title compound, [Cu(C5H10NO2S2)(C18H15P)2]·C18H15P, the Cu atom is in a distorted tetrahedral coordination, with two tri­phenyl­phosphine P atoms and two S atoms from an N,N‐bis(2‐hydroxy­ethyl)­di­thio­carbamate ligand occupying the vertices. The crystal structure is characterized by alternate layers of complex and tri­phenyl­phosphine mol­ecules.  相似文献   
96.
The kinetics and mechanism of Ag(I)-catalyzed oxidation of l-alanine by cerium (IV) in sulfuric acid media have been investigated by titrimetric technique of redox in the temperature range of 298–313 K. It is found that the reaction is of first order with respect to Ce(IV) and l-alanine, and it is of a positive fractional order with respect to Ag(I). It is found that the pseudo first order ([l-alanine] ? [Ce(IV)] ? [Ag(I)]) rate constant k′ increases with the increase of[H+]. The major oxidation product of alanine has been identified as acetaldehyde by an 1H NMR and IR spectroscopy. Under the experimental conditions, the kinetically active species has been found to be Ce4+. Under nitrogen atmosphere, the reaction system can initiate the polymerization of acrylonitrile, indicating generation of free radicals. On the basis of the experimental results, a suitable mechanism has been proposed. The rate constants of the rate-determining step together with the activation parameters were evaluated.  相似文献   
97.
Functional nanomaterials have emerged as promising candidates in the development of an amperometric sensing platform for the detection and quantification of bioanalytes. The remarkable characteristics of nanomaterials based on metal and metal oxide nanoparticles, carbon nanotubes, and graphene ensure enhanced performance of the sensors in terms of sensitivity, selectivity, detection limit, response time, and multiplexing capability. The electrocatalytic properties of these functional materials can be combined with the biocatalytic activity of redox enzymes to develop integrated biosensing platforms. Highly sensitive and stable miniaturized amperometric sensors have been developed by integrating the nanomaterials and biocatalyst with the transducers. This review provides an update on recent progress in the development of amperometric sensors/biosensors using functional nanomaterials for the sensing of clinically important metabolites such as glucose, cholesterol, lactate, and glutamate, immunosensing of cancer biomarkers, and genosensing.  相似文献   
98.
4-Hydroxy-5-nitrophthalimides were produced via nucleophilic aromatic substitution (NAS) of 4,5-dichloro phthalimide substituents by potassium nitrite. The use of a N-phenyl-phthalimide having a protected 4′-hydroxyl group allows concurrent deprotection and nitro reduction to amine to give the 4-hydroxy-5-amino-N-(4′-hydroxyphenyl) phthalimide. This key intermediate is the precursor to a poly (ether-imide-benzoxazole), and is the condensable monomer for a poly (ester-imide-benzoxazole). Benzoxazole monomer formation via condensation with p-fluorobenzoyl chloride afforded 2-(4′-fluorophenyl)-5,6,-N-[4′(-hydroxyphenyl) imide]-benzoxazole, which was polymerized under NAS conditions to produce a poly(ether-imide-benzoxazole) having an endothermic transition at 454°C with weight retention of 90% at 500°C in both air and nitrogen. Solution polycondensation of the 4-hydroxy-5-amino-N-(4′-hydroxyphenyl) phthalimide monomer with isophthaloyl chloride afforded a poly(ester-amide-imide) which was isolated and thermally cyclodehydrated in the solid state under vacuum to give a poly(ester-imide-benzoxazole) having 95% weight retention at 500°C in both air and nitrogen, with no detectable DSC transitions up to 500°C. © 1994 John Wiley & Sons, Inc.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号