首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1407篇
  免费   36篇
  国内免费   4篇
化学   857篇
晶体学   26篇
力学   41篇
数学   132篇
物理学   391篇
  2023年   8篇
  2022年   23篇
  2021年   34篇
  2020年   43篇
  2019年   42篇
  2018年   34篇
  2017年   30篇
  2016年   42篇
  2015年   39篇
  2014年   48篇
  2013年   96篇
  2012年   81篇
  2011年   87篇
  2010年   73篇
  2009年   60篇
  2008年   85篇
  2007年   58篇
  2006年   47篇
  2005年   35篇
  2004年   22篇
  2003年   19篇
  2002年   25篇
  2001年   9篇
  2000年   18篇
  1999年   10篇
  1998年   8篇
  1997年   10篇
  1995年   13篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   15篇
  1990年   9篇
  1987年   7篇
  1986年   7篇
  1985年   14篇
  1984年   15篇
  1983年   16篇
  1982年   11篇
  1981年   16篇
  1980年   15篇
  1979年   11篇
  1978年   16篇
  1977年   19篇
  1976年   26篇
  1975年   11篇
  1974年   8篇
  1973年   13篇
  1972年   7篇
  1958年   7篇
排序方式: 共有1447条查询结果,搜索用时 406 毫秒
81.
The most accurate method for the analysis of complex gamma ray spectra from scintillation detectors is least squares method. The major requirement of this method is individual standard spectra of all nuclides expected in the complex spectrum which is not possible and feasible for some nuclides. In the present work, an approach of using simulated standard spectrum of the radionuclides for the least squares analysis is studied. The paper describes the methodology used for the generation of simulated spectrum which is the main objective, and validation of results using standard sources in the Sodium Iodide (NaI(Tl)) based gamma ray spectrometer.  相似文献   
82.
83.
In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstructed image along with fast and reliable data acquisition is highly desirable for many biological applications. An accurate representation of uniform distribution of projection data is necessary to ensure high reconstruction quality. The current techniques for data acquisition suffer from nonuniformities or local anisotropies in the distribution of projection data and present a poor approximation of a true uniform and isotropic distribution. In this work, we have implemented a technique based on Quasi-Monte Carlo method to acquire projections with more uniform and isotropic distribution of data over a 3D acquisition space. The proposed technique exhibits improvements in the reconstruction quality in terms of both mean-square-error and visual judgment. The effectiveness of the suggested technique is demonstrated using computer simulations and 3D EPRI experiments. The technique is robust and exhibits consistent performance for different object configurations and orientations.  相似文献   
84.
Phytic acid is the major storage form of organic phosphorus in nature- and plant-based animal feed. It forms insoluble complexes with nutritionally important metals and proteins that are unavailable for monogastric or agastric animals. Phytases initiate the stepwise hydrolysis of phytic acid and release inorganic orthophosphate. In the present investigation, the phytase gene from a phytase producing Bacillus licheniformis strain PB-13 was successfully expressed in Escherichia coli BL21. Recombinant phytase ‘rPhyPB13’ was found to be catalytically active, with an activity of 0.97 U/mL and specific activity of 0.77 U/mg. The rPhyPB13 was purified to 14.10-fold using affinity chromatography. Similar to other β-propeller phytases, purified rPhyPB13 exhibited maximal activity at pH 6.0–6.5 and 60 °C in the presence of 1 mM Ca2+ and was highly active over a wider pH range (pH 4.0–8.0) and high temperature (80 °C). It has shown maximum activity towards Na-phytate as substrate. The observed K m , V max and k cat of purified rPhyPB13 were 1.064 mM, 1.32 μmol/min/mg and 27.46 s?1, respectively. PhyPB13 was resistant to trypsin inactivation, activated in presence of Ca2+ and inhibited in presence of EDTA. Crude rPhyPB13 has good digestion efficiency for commercial feed and soybean meal. These results indicate that PhyPB13 is a β-propeller phytase that has application potential in aquaculture feed.  相似文献   
85.
Hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from primary shikimate and secoiridoid pools have been fortified to vincamine less hairy root clone of Vinca minor to determine the regulatory factors associated with vincamine biosynthesis. Growth kinetic studies revealed that acetyltransferase elicitor acetic anhydride and terpenoid precursor loganin significantly reduce the growth either supplemented alone or in combination (GI?=?140.6?±?18.5 to 246.7?±?24.3), while shikimate and tryptophan trigger biomass accumulation (GI?=?440.2?±?31.5 to 540.5?±?40.3). Loganin also downregulates total alkaloid biosynthesis. Maximum flux towards vincamine production (0.017?±?0.001 % dry wt.) was obtained when 20-day-old hairy roots were fortified with secologanin (10 mg/l) along with tryptophan (100 mg/l), naproxen (8.4 mg/l), hydrogen peroxide (20 μg/l), and acetic anhydride (32.4 mg/l). This was supported by RT PCR (qPCR) analysis where 2- and 3-fold increase in tryptophan decarboxylase (TDC; RQ?=?2.0?±?0.09) and strictosidine synthase (STR; RQ?=?3.3?±?0.36) activity, respectively, was recorded. The analysis of variance (ANOVA) for growth kinetics, total alkaloid content, and gene expression studies favored highly significant data (P?<?0.05–0.01). Above treated hairy roots were also up-scaled in a 5-l stirred-tank bioreactor where a 40-day cycle yielded 8-fold increase in fresh root mass.  相似文献   
86.
Aromatase is a crucial enzyme for the catalysis of aromatization reaction at the last and rate-limiting step involved in the conversion of androgenic substrates to an estrogenic substrate. A hormone-dependent breast cancer in postmenopausal woman can be cured by inhibition of estrogen biosynthesis by the help of aromatase inhibitors (AIs). The mode of interactions of flavonones with the active site of aromatase has been studied in search of potent and selective AIs as a substitute of the natural steroidal ligand. Structure-based computational approach namely, molecular docking simulations were performed to investigate the structural features of the docked complex of aromatase and flavonoid ligands. A nonsteroidal flavonoid pharmacophore showing electrostatic and steric features for selective binding within the main pocket of the catalytic active site of aromatase has been identified as an outcome of the study. The binding affinity of quercetin and isoflavone were predicted within aromatase. Isoflavone was used as a negative control to compare its binding affinities with the selected dataset. The predicted binding affinity of negative control isoflavone was in accordance with its in vitro AI efficacy. Isoflavone showed poor binding affinity and ranked last in terms of MolDock score (−86.309 kcal/molÅ) compared to dataset molecules. The generated pharmacophoric information will be helpful for the synthetic chemist to design and synthesize selective AIs with comparable binding affinity to the natural steroidal ligand.  相似文献   
87.
Free radicals, generally composed of reactive oxygen species (ROS) and reactive nitrogen species (RNS), are generated in the body by various endogenous and exogenous systems. The overproduction of free radicals is known to cause several chronic diseases including cancer. However, increased production of free radicals by chemotherapeutic drugs is also associated with apoptosis in cancer cells, indicating the dual nature of free radicals. Among various natural compounds, curcumin manifests as an antioxidant in normal cells that helps in the prevention of carcinogenesis. It also acts as a prooxidant in cancer cells and is associated with inducing apoptosis. Curcumin quenches free radicals, induces antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and upregulates antioxidative protein markers–Nrf2 and HO-1 that lead to the suppression of cellular oxidative stress. In cancer cells, curcumin aggressively increases ROS that results in DNA damage and subsequently cancer cell death. It also sensitizes drug-resistant cancer cells and increases the anticancer effects of chemotherapeutic drugs. Thus, curcumin shows beneficial effects in prevention, treatment and chemosensitization of cancer cells. In this review, we will discuss the dual role of free radicals as well as the chemopreventive and chemotherapeutic effects of curcumin and its analogues against cancer.  相似文献   
88.
Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.  相似文献   
89.
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya.  相似文献   
90.
The effect of aqueous solutions of selected ionic liquids solutions on Ideonella sakaiensis PETase with bis(2-hydroxyethyl) terephthalate (BHET) substrate were studied by means of molecular dynamics simulations in order to identify the possible effect of ionic liquids on the structure and dynamics of enzymatic Polyethylene terephthalate (PET) hydrolysis. The use of specific ionic liquids can potentially enhance the enzymatic hydrolyses of PET where these ionic liquids are known to partially dissolve PET. The aqueous solution of cholinium phosphate were found to have the smallest effect of the structure of PETase, and its interaction with (BHET) as substrate was comparable to that with the pure water. Thus, the cholinium phosphate was identified as possible candidate as ionic liquid co-solvent to study the enzymatic hydrolyses of PET.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号