首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   58篇
  国内免费   1篇
化学   775篇
晶体学   2篇
力学   52篇
数学   160篇
物理学   207篇
  2024年   4篇
  2023年   13篇
  2022年   26篇
  2021年   57篇
  2020年   43篇
  2019年   28篇
  2018年   29篇
  2017年   20篇
  2016年   70篇
  2015年   43篇
  2014年   42篇
  2013年   76篇
  2012年   91篇
  2011年   115篇
  2010年   55篇
  2009年   37篇
  2008年   56篇
  2007年   66篇
  2006年   61篇
  2005年   59篇
  2004年   33篇
  2003年   35篇
  2002年   23篇
  2001年   7篇
  2000年   17篇
  1999年   6篇
  1997年   2篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   7篇
  1987年   8篇
  1986年   2篇
  1985年   3篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1976年   3篇
  1973年   2篇
  1961年   1篇
  1948年   1篇
  1938年   1篇
  1937年   1篇
  1918年   1篇
  1916年   1篇
排序方式: 共有1196条查询结果,搜索用时 31 毫秒
111.
Coke formation during the methanol‐to‐olefin (MTO) conversion has been studied at the single‐particle level with in situ UV/Vis and confocal fluorescence microscopy. For this purpose, large H‐ZSM‐5 crystals differing in their Si/Al molar ratio have been investigated. During MTO, performed at 623 and 773 K, three major UV/Vis bands assigned to different carbonaceous deposits and their precursors are observed. The absorption at 420 nm, assigned to methyl‐substituted aromatic compounds, initiates the buildup of the optically active coke species. With time‐on‐stream, these carbonaceous compounds expand in size, resulting in the gradual development of a second absorption band at around 500 nm. An additional broad absorption band in the 600 nm region indicates the enhanced formation of extended carbonaceous compounds that form as the reaction temperature is raised. Overall, the rate of coke formation decreases with decreasing aluminum content. Analysis of the reaction kinetics indicates that an increased Brønsted acid site density facilitates the formation of larger coke species and enhances their formation rate. The use of multiple excitation wavelengths in confocal fluorescence microscopy enables the localization of coke compounds with different molecular dimensions in an individual H‐ZSM‐5 crystal. It demonstrates that small coke species evenly spread throughout the entire H‐ZSM‐5 crystal, whereas extended coke deposits primarily form near the crystal edges and surfaces. Polarization‐dependent UV/Vis spectroscopy measurements illustrate that extended coke species are predominantly formed in the straight channels of H‐ZSM‐5. In addition, at higher temperatures, fast deactivation leads to the formation of large aromatic compounds within channel intersections and at the external zeolite surface, where the lack of spatial restrictions allows the formation of graphite‐like coke.  相似文献   
112.
A combination of atomic force microscopy (AFM), high‐resolution scanning electron microscopy (HR‐SEM), focused‐ion‐beam scanning electron microscopy (FIB‐SEM), X‐ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron‐based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM‐5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol‐to‐olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM‐5. Interestingly, only residual surface mesoporosity was generated in the mildly steamed ZSM‐5 zeolite, leading to rapid crystal coloration and coking upon catalytic testing and indicating an enhanced deactivation of the zeolites. In contrast, harsh steaming conditions generated 5–50 nm mesopores, extensively improving the accessibility of the zeolites. However, severe dealumination decreased the strength of the Brønsted acid sites, causing a depletion of the overall acidity, which resulted in a major drop in catalytic activity.  相似文献   
113.
A colloidal crystal-splitting growth regime has been accessed, in which TiO(2) nanocrystals, selectively trapped in the metastable anatase phase, can evolve to anisotropic shapes with tunable hyperbranched topologies over a broad size interval. The synthetic strategy relies on a nonaqueous sol-gel route involving programmed activation of aminolysis and pyrolysis of titanium carboxylate complexes in hot surfactant media via a simple multi-injection reactant delivery technique. Detailed investigations indicate that the branched objects initially formed upon the aminolysis reaction possess a strained monocrystalline skeleton, while their corresponding larger derivatives grown in the subsequent pyrolysis stage accommodate additional arms crystallographically decoupled from the lattice underneath. The complex evolution of the nanoarchitectures is rationalized within the frame of complementary mechanistic arguments. Thermodynamic pathways, determined by the shape-directing effect of the anatase structure and free-energy changes accompanying branching and anisotropic development, are considered to interplay with kinetic processes, related to diffusion-limited, spatially inhomogeneous monomer fluxes, lattice symmetry breaking at transient Ti(5)O(5) domains, and surfactant-induced stabilization. Finally, as a proof of functionality, the fabrication of dye-sensitized solar cells based on thin-film photoelectrodes that incorporate networked branched nanocrystals with intact crystal structure and geometric features is demonstrated. An energy conversion efficiency of 6.2% has been achieved with standard device configuration, which significantly overcomes the best performance ever approached with previously documented prototypes of split TiO(2) nanostructures. Analysis of the relevant photovoltaic parameters reveals that the utilized branched building blocks indeed offer light-harvesting and charge-collecting properties that can overwhelm detrimental electron losses due to recombination and trapping events.  相似文献   
114.
A H-bond-driven, noncovalent, reversible solubilization/functionalization of multiwalled carbon nanotubes (MWCNTs) in apolar organic solvents (CHCl(3), CH(2)Cl(2), and toluene) has been accomplished through a dynamic combination of self-assembly and self-organization processes leading to the formation of supramolecular polymers, which enfold around the outer wall of the MWCNTs. To this end, a library of phenylacetylene molecular scaffolds with complementary recognition sites at their extremities has been synthesized. They exhibit triple parallel H-bonds between the NH-N-NH (DAD) functions of 2,6-di(acetylamino)pyridine and the CO-NH-CO (ADA) imidic groups of uracil derivatives. These residues are placed at 180° relative to each other (linear systems) or at 60°/120° (angular modules), in order to tune their ability of wrapping around MWCNTs. Molecular Dynamics (MD) simulations showed that the formation of the hybrid assembly MWCNT?[X?Y](n) (where X = 1a or 1b -DAD- and Y = 2, 3, or 4 -ADA-) is attributed to π-π and CH-π interactions between the graphitic walls of the carbon materials and the oligophenyleneethynylene polymer backbones along with its alkyl groups, respectively. Addition of polar or protic solvents, such as DMSO or MeOH, causes the disruption of the H-bonds with partial detachment of the polymer from the CNTs, followed by precipitation. Taking advantage of the chromophoric and luminescence properties of the molecular subunits, the solubilization/precipitation processes have been monitored by UV-vis absorption and luminescence spectroscopies. All hybrid MWCNTs-polymer materials have been also structurally characterized via thermogravimetric analysis (TGA), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS).  相似文献   
115.
The monitoring of the antibacterial agent triclosan binding at nanomolar concentration from an aqueous solution by employing a well-packed monolayer with a predetermined single orientation made of specifically synthesized 2,3-dimethyl-6-(undec-10-enamide)-6-deoxy-β-cyclodextrin (DMBUA) on a silicon wafer (Si/SiO(2)) coated with a novolac resin is reported. A white light reflectance spectroscopy (WLRS) setup was used for the real-time monitoring of the DMBUA deposition and triclosan binding processes. Film thicknesses obtained by WLRS were in very good agreement with the ones measured by X-ray reflectivity (XRR) experiments. Triclosan binds strongly to the DMBUA monolayer (logK(assoc)=6.68). NMR studies in aqueous solution indicated that the chlorophenolyl ring rather than the dichlorophenyl ring is preferentially inserted into DMBUA cups. The current detecting system that requires no tedious surface chemistry, no thiolated cyclodextrins, no gold surfaces, and no expensive equipment may be useful in capturing small molecules and may permit various applications, e.g., preparation of antimicrobial surfaces.  相似文献   
116.
Recently, a simple scaling argument was introduced that allows us to map, with some precautions, Brownian and Monte Carlo dynamics for spherical particles. Here, we extend the scaling to study systems that have orientational degrees of freedom and carefully asses its validity over a wide region of temperature and density. Our work allows us to devise a Brownian Monte Carlo algorithm that produces, to a good approximation, physically meaningful trajectories with a minimum programming effort, although at the expense of some sampling efficiency.  相似文献   
117.
118.
The previously ill-characterized [H(x)Rh(22)(CO)(35)](4-/5-) carbonyl cluster has been obtained as a byproduct of the synthesis of [H(3)Rh(13)(CO)(24)](2-) and effectively separated by metathesis of their sodium salts with [NEt(4)]Cl. Although the yields are modest and never exceed 10-15% (based on Rh), this procedure affords spectroscopically pure [H(3)Rh(22)(CO)(35)](5-) anion. Formation of the latter in mixture with other Rh clusters was also observed by electrospray ionization-mass spectrometry (ESI-MS) in the oxidation of [H(2)Rh(13)(CO)(24)](3-) with Cu(2+) salts. The recovery of further amounts of [H(3)Rh(22)(CO)(35)](5-) was hampered by too similar solubility of the salts composing the mixture. Conversely, the reaction in CH(3)CN of [H(2)Rh(13)(CO)(24)](3-) with [Cu(MeCN)(4)](+)[BF(4)](-) leads to the [H(2)Rh(13)(CO)(24){Cu(MeCN)}(2)](-) bimetallic cluster. The X-ray crystal structures of [H(4)Rh(22)(CO)(35)](4-), [H(3)Rh(22)(CO)(35)](5-), and [H(2)Rh(13)(CO)(24){Cu(MeCN)}(2)](-) are reported. From a formal point of view, the metal frame of the former two species can be derived by interpenetration along two orthogonal axes of two moieties displaying the structure of the latter. The availability of [H(8-n)Rh(22)(CO)(35)](n-) salts prompted their detailed chemical, spectroscopic, and electrochemical characterization. The presence of hydride atoms has been directly proved both by ESI-MS and (1)H NMR. Moreover, both [H(4)Rh(22)(CO)(35)](4-) and [H(3)Rh(22)(CO)(35)](5-) undergo distinctive electrochemically reversible redox changes. This allows to assess electrochemical studies as indisputable though circumstantial evidence of the presence of (1)H NMR-silent hydride atoms in isostructural anions of different charge.  相似文献   
119.
Glass-forming liquids have been extensively studied in recent decades, but there is still no theory that fully describes these systems, and the diversity of treatments is in itself a barrier to understanding. Here we introduce a new simple model that (possessing both liquid-crystal and glass transition) unifies different approaches, producing most of the phenomena associated with real glasses, without loss of the simplicity that theorists require. Within the model we calculate energy relaxation, nonexponential slowing phenomena, the Kauzmann temperature, and other classical signatures. Moreover, the model reproduces a subdiffusive exponent observed in experiments of dense systems. The simplicity of the model allows us to identify the microscopic origin of glassification, leaving open the possibility for theorists to make further progress.  相似文献   
120.
3-(N-Substituted) 4(1H)-quinolinones were synthesized using the copper-catalyzed Ullmann C-N bond forming strategy in moderate to quantitative yields. Starting from 3-halo-4(1H)-quinolones, various nucleophiles including amides, lactams, sulfonamides and NH-containing azoles have been used successfully. In all cases, the reactions take place rapidly in toluene and proceed by using copper powder as a catalyst, DMEDA as a ligand and K(2)CO(3) as a base. In addition, other related heterocycles such as 3-bromoquinolin-2(1H)-ones, 3-bromocoumarin, and 3,5-dibromo-2-pyridone show good to very high reactivity with various nucleophiles under our Cu/DMEDA catalyst system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号