首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1385篇
  免费   66篇
  国内免费   3篇
化学   871篇
晶体学   2篇
力学   78篇
数学   229篇
物理学   274篇
  2024年   4篇
  2023年   12篇
  2022年   52篇
  2021年   54篇
  2020年   48篇
  2019年   32篇
  2018年   32篇
  2017年   22篇
  2016年   84篇
  2015年   50篇
  2014年   57篇
  2013年   88篇
  2012年   96篇
  2011年   139篇
  2010年   69篇
  2009年   51篇
  2008年   66篇
  2007年   68篇
  2006年   65篇
  2005年   67篇
  2004年   37篇
  2003年   41篇
  2002年   32篇
  2001年   17篇
  2000年   14篇
  1999年   6篇
  1998年   5篇
  1997年   9篇
  1996年   9篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1985年   6篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1975年   5篇
  1974年   3篇
  1972年   5篇
  1970年   4篇
排序方式: 共有1454条查询结果,搜索用时 343 毫秒
991.
Pt nanoparticles are typically decorated as co‐catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co‐catalyst loadings is a key challenge in the field. We explore a dewetting‐dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co‐catalyst mass activity for H2 generation. For this, we sputter first Pt‐Ni bi‐layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting‐alloying of the Pt‐Ni bi‐layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt‐decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non‐porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co‐catalyst, which provides an increased surface‐to‐volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co‐catalyst surface for H2 evolution.  相似文献   
992.
We report on the design and testing of new graphite and graphene oxide-based extended π-conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle-functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform-sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon-supported iron oxide nanoparticulate pre-catalysts were tested, upon hydrogen reduction in situ, for the conversion of CO2 to CO as well as for the selective formation of CH4 and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide-supported iron oxide pre-catalyst converted CO2 into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3-dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO2 to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ-Fe2O3 decorated graphene oxide-based pre-catalyst displays fairly constant activity up to 405 °C, it was found by GC-MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron-functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube-based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non-covalent interactions in the iron oxide-graphene oxide networks, which could inform the design of nano-materials with performance in future sustainable catalysis applications.  相似文献   
993.
The Pauling rules have been used for decades to rationalise the crystal structures of ionic compounds. Despite their importance, there has been no statistical assessment of the performances of these five empirical rules so far. Here, we rigorously and automatically test all five Pauling rules for a large data set of around 5000 known oxides. We discuss each Pauling rule separately, stressing their limits and range of application in terms of chemistries and structures. We conclude that only 13 % of the oxides simultaneously satisfy the last four rules, indicating a much lower predictive power than expected.  相似文献   
994.
A transition-metal-free carbon isotope exchange procedure on phenyl acetic acids is described. Utilizing the universal precursor CO2, this protocol allows the carbon isotope to be inserted into the carboxylic acid position, with no need of precursor synthesis. This procedure enabled the labeling of 15 pharmaceuticals and was compatible with carbon isotopes [14C] and [13C]. A proof of concept with [11C] was also obtained with low molar activity valuable for distribution studies.  相似文献   
995.
Self Organising Maps (SOMs) are one of the most powerful learning strategies among neural networks algorithms. SOMs have several adaptable parameters and the selection of appropriate network architectures is required in order to make accurate predictions. The major disadvantage of SOMs is probably due to the network optimisation, since this procedure can be often time-expensive.  相似文献   
996.
Curcumin possesses wide‐ranging anti‐inflammatory and anti‐cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (γ‐Fe2O3), called surface‐active maghemite nanoparticles (SAMNs) were surface‐modified with curcumin molecules, due to the presence of under‐coordinated FeIII atoms on the nanoparticle surface. The so‐obtained curcumin‐modified SAMNs (SAMN@curcumin) had a mean size of 13±4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mössbauer spectroscopy, X‐ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.  相似文献   
997.
The interest in research on inorganic colloidal nanoparticles has moved to more complex structures, such as anisotropically shaped particles and branched objects. Recently, schemes for the synthesis of heterostructures have also been presented. In this article we discuss the synthesis conditions for spherical and branched nanoparticles. The influence of parameters as temperature and composition of the mixture of surfactants on the shape of the growing particles is discussed. Also, an overview on different approaches for the formation of heterostructures is presented briefly.  相似文献   
998.
Shape memory materials (SMM) are receiving increasing attention for their use in applications that exploit their dynamic behavior. A thermomechanical model for devices with pseudoelastic behavior has been proposed in previous works [11] (Bernardini and Pence, 2005) [15] (Bernardini and Rega, 2005). The model takes into account several aspects of SMM behavior by means of seven model parameters.In this paper the effect of each parameter on the non-isothermal rate-dependent behavior of the device is studied, by paying particular attention to the effect of the thermomechanical coupling. Some overall synthetic indicators of the behavior of the shape memory device are defined in terms of the model parameters. By evaluating such indicators, a lot of information about the mechanical, thermal and thermomechanical effects on the device behavior can be gained before computing explicitly the response of the shape memory oscillator.The present work may provide a guide for the proper utilization of the model for the investigation of the dynamic response.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号