首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4640篇
  免费   163篇
  国内免费   12篇
化学   2779篇
晶体学   87篇
力学   150篇
数学   331篇
物理学   1468篇
  2023年   42篇
  2022年   92篇
  2021年   82篇
  2020年   101篇
  2019年   93篇
  2018年   115篇
  2017年   85篇
  2016年   132篇
  2015年   109篇
  2014年   162篇
  2013年   262篇
  2012年   348篇
  2011年   338篇
  2010年   194篇
  2009年   171篇
  2008年   202篇
  2007年   190篇
  2006年   188篇
  2005年   151篇
  2004年   116篇
  2003年   115篇
  2002年   89篇
  2001年   75篇
  2000年   61篇
  1999年   54篇
  1998年   32篇
  1997年   54篇
  1996年   64篇
  1995年   44篇
  1994年   75篇
  1993年   82篇
  1992年   80篇
  1991年   50篇
  1990年   50篇
  1989年   54篇
  1988年   35篇
  1987年   39篇
  1986年   37篇
  1985年   35篇
  1984年   33篇
  1983年   37篇
  1982年   39篇
  1981年   50篇
  1980年   40篇
  1979年   31篇
  1978年   26篇
  1977年   34篇
  1975年   24篇
  1974年   27篇
  1973年   33篇
排序方式: 共有4815条查询结果,搜索用时 15 毫秒
221.
Our previous work on stochastic resonance (SR) in threshold based systems proved that the SR effect is dependent on the nature of the input signal distribution; more specifically, for certain types of signal distribution SR is not observed [Das A, Stocks NG, Nikitin A, Hines EL. Quantifying stochastic resonance in a single threshold detector for random aperiodic signals. Fluctuation Noise Lett 2004;4:L247–65]. Here we show that suprathreshold stochastic resonance (SSR) – a novel and distinct form of SR – removes this limitation and hence leads to the conclusion that SSR can probably enhance the transmission of signals of any distribution and amplitude. SSR effects are studied in a parallel array of identical nonlinear threshold based devices. A double exponential signal distribution is chosen because this distribution did not demonstrate conventional SR effects in a single threshold device [Das A, Stocks NG, Nikitin A., Hines EL. Quantifying Stochastic resonance in a single threshold detector for random aperiodic signals. Fluctuation and Noise Letters 2004;4:L247-L265.]. SSR as a possible mechanism for enhancing transmission of speech signals in the human ear is also discussed.  相似文献   
222.
223.
Polymerization of acrylonitrile initiated by the Cr6+/thioacetamide redox system was studied in nitrogen atmosphere in the temperature range 35–45°C. The rate of polymerization and the rate of Cr6+ ion disappearance were measured. The effect of certain water-miscible organic solvents, neutral electrolytes, and complexing agents on the rate of polymerization was investigated. Chromic acid alone did not initiate the polymerization under deaerated and undeaerated conditions. Depending on the results obtained, a suitable kinetic scheme was proposed and various rate parameters were evaluated.  相似文献   
224.
Kinetics of polymerization of methyl methacrylate initiated by Mn3+/1,2-propanedlol has been investigated in aqueous sulfuric acid at the temperature range of 25–35°C. The rate of polymerization (Rp) and the rate of manganic ion disappearance (-RMn) have been computed. The effects of organic solvents, certain cationic and anionic detergents, added electrolytes on the initial rate of polymerization, and maximum conversion have been examined. Depending on the kinetic results, a reaction scheme has been suggested involving the formation of a complex between Mn3+ and the alcohol, which subsequently decomposed in an unimolecular step to generate the initiating free-radical which initiates polymerization and termination of the growing polymer chain by metal ion.  相似文献   
225.
A novel method is described for the preparation of nanocomposites comprising a high performance rubber for tire application and layered silicates clay. In this work nanocomposites of solution‐styrene butadiene rubber (S‐SBR) with montmorillonite layered silicate were prepared with carboxylated nitrile rubber (XNBR), a polar rubber, as a compatibilizer. A sufficient amount of organomodified layered silicate was loaded in carboxylated nitrile rubber (XNBR) and this compound was blended as a master batch in the S‐SBR. Mixed intercalated/exfoliated morphologies in the nanocomposite are evinced by X‐ray diffraction measurements and transmission electron microscopy. Dynamic mechanical analysis also supports the compatibility of the composites. A good dispersion of the layered silicate in the S‐SBR matrix was reflected from the physical properties of the nanocomposites, especially in terms of tensile strength and high elongation properties.  相似文献   
226.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   
227.
The association reaction between silyl radical (SiH3) and H2O2 has been studied in detail using high-level composite ab initio CBS-QB3 and G4MP2 methods. The global hybrid meta-GGA M06 and M06-2X density functionals in conjunction with 6-311++G(d,p) basis set have also been applied. To understand the kinetics, variational transition-state theory calculation is performed on the first association step, and successive unimolecular reactions are subjected to Rice–Ramsperger–Kassel–Marcus calculations to predict the reaction rate constants and product branching ratios. The bimolecular rate constant for SiH3–H2O2 association in the temperature range 250–600 K, k(T) = 6.89 × 10?13 T ?0.163exp(?0.22/RT) cm3 molecule?1 s?1 agrees well with the current literature. The OH production channel, which was experimentally found to be a minor one, is confirmed by the rate constants and branching ratios. Also, the correlation between our theoretical work and experimental literature is established. The production of SiO via secondary reactions is calculated to be one of the major reaction channels from highly stabilized adducts. The H-loss pathway, i.e., SiH2(OH)2 + H, is the major decomposition channel followed by secondary dissociation leading to SiO.  相似文献   
228.
We report a successful facile and novel approach for in situ synthesis of gold nanoparticles (AuNPs) via enzymatic dephosphorylation reaction at room temperature. Fmoc-tyrosine phosphate and cytidine-5-mono phosphate are used to sense the activities of an enzyme alkaline phosphatase. Formation of AuNps is highly selective towards biomolecules and it is readily detected colorimetrically and UV–Vis analysis. In this procedure, dephosphorylated product plays both roles as reducing and stabilizing agent to direct the formation of AuNPs in aqueous media. Transmission electron microscopic study reveales that hexagonal AuNPs were synthesized by using Fmoc-tyrosine phosphate and alkaline phosphatase. Wide angle X-ray scattering data confirms the formation of AuNPs. FT-IR studies confirm that biomolecules play crucial role to stabilize the AuNPs by molecular interactions with the surface of AuNPs. In situ synthesized AuNPs are applied for the sensing of enzyme activity.  相似文献   
229.
The article reports on the wetting properties of silicon-based materials as a function of their roughness and chemical composition. The investigated surfaces consist of hydrogen-terminated and chemically modified atomically flat crystalline silicon, porous silicon and silicon nanowires. The hydrogenated surfaces are functionalized with 1-octadecene or undecylenic acid under thermal conditions. The changes occurring upon surface functionalization are characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) spectroscopy and water contact angle measurements. By increasing the surface roughness, the static water contact angle increases. The combination of high surface roughness with chemical functionalization with water repellent coating (1-octadecene) enables reaching superhydrophobicity (water contact angle greater than 150°) for silicon nanowires.  相似文献   
230.
The synthesis and characterization of two pyrazolate‐bridged dicopper(II) complexes, [Cu2(L1)2(H2O)2](ClO4)2 ( 1 , HL1=3,5‐dipyridyl‐4‐(2‐keto‐pyridyl)pyrazole) and [Cu2(L2)2(H2O)2](ClO4)2 ( 2 , HL2=3,5‐dipyridyl‐4‐benzoylpyrazole), are discussed. These copper(II) complexes are formed from the reactions between pyridine‐2‐aldehyde, 2‐acetylpyridine (for compound 1 ) or acetophenone (for compound 2 ), and hydrazine hydrate with copper(II) perchlorate hydrate under ambient conditions. The single‐crystal X‐ray structure of compound 1? 2 H2O establishes the formation of a pyrazole ring from three different carbon centers through C? C bond‐forming reactions, mediated by copper(II) ions. The free pyrazoles (HL1 and HL2) are isolated from their corresponding copper(II) complexes and are characterized by using various analytical and spectroscopic techniques. A mechanism for the pyrazole‐ring synthesis that proceeds through C? C bond‐forming reactions is proposed and supported by theoretical calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号