首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   38篇
化学   535篇
晶体学   5篇
力学   9篇
数学   42篇
物理学   66篇
  2024年   1篇
  2023年   6篇
  2022年   12篇
  2021年   10篇
  2020年   20篇
  2019年   20篇
  2018年   7篇
  2017年   10篇
  2016年   16篇
  2015年   22篇
  2014年   16篇
  2013年   45篇
  2012年   34篇
  2011年   61篇
  2010年   22篇
  2009年   19篇
  2008年   50篇
  2007年   34篇
  2006年   29篇
  2005年   52篇
  2004年   36篇
  2003年   35篇
  2002年   35篇
  2001年   12篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   7篇
  1996年   10篇
  1995年   1篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
排序方式: 共有657条查询结果,搜索用时 15 毫秒
531.
Herein, bipolar electrochemistry is applied in a straightforward way to the site‐selective in situ synthesis of metal–organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site‐selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle. The wireless nature of electrodeposition allows the potential for mass production of such Janus‐type objects.  相似文献   
532.
Inhibition of protein–protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α‐Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed “proteomimetics”, which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N‐alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.  相似文献   
533.
One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light‐harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar‐energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer‐based membrane systems containing LHCII–pigment complexes ready for light harvesting. LHCII was produced by cell‐free protein synthesis based on wheat‐germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins.  相似文献   
534.
NMR spectroscopy is the go-to technique for determining the solution structures of organic, organometallic, and even macromolecular species. However, structure determination of nanoscale aqueous inorganic clusters by NMR spectroscopy remains an unexplored territory. The few hydroxo-bridged inorganic species well characterized by 1H Nuclear Magnetic Resonance spectroscopy (1H-NMR) do not provide enough information for signal assignment and prediction of new samples. 1H-NMR and quantum mechanical (QM) computations were used to characterize the NMR spectra of the entire array of inorganic flat-Ga13–xInx (0 ≤ x ≤ 6) nanoscale clusters in solution. A brief review of the known signals for μ2-OH and μ3-OH bridges gives expected ranges for certain types of protons, but does not give enough information for exact peak assignment. Integration values and NOESY data were used to assign the peaks of several cluster species with simple 1H-NMR spectra. Computations agree with these hydroxide signal assignments and allow for assignment of the complex spectra arising from the remaining cluster species. This work shows that 1H-NMR spectroscopy provides a variety of information about the solution behavior of inorganic species previously thought to be inaccessible by NMR due to fast ligand and/or proton exchange in wet solvents.  相似文献   
535.
We consider the asymptotic behavior and local structure of solutions to the nonlocal variational problem developed in the companion article to this work, On a Model of Nonlocal Continuum Mechanics Part I: Existence and Regularity. After a brief review of the basic setup and results of Part I, we conduct a thorough analysis of the phase plane related to an integro-differential Euler--Lagrange equation and classify all admissible structures that arise as energy minimizing strain states. We find that for highly elastic materials with relatively weak particle-particle interactions, the maximum number of internal phase boundaries is two. Moreover, we also develop explicit bounds for the number of internal phase boundaries supported by any material and show that this bound is essentially inversely related to the particle size. To understand the question of asymptotics, we utilize the Young measure and show that in the sense of energetics and averages, minimizers of the full nonlocal problem converge to minimizers of two limiting problems corresponding to both the large and small particle limits. In fact, in the small particle limit, we find that the minimizing fields converge, up to a subsequence in strong-Lp, for 1 ≤ p < ∞, to fields that support either a single internal phase boundary, or two internal phase boundaries that are distributed symmetrically about the body midpoint. We close this work with some computations that illustrate these asymptotic limits and provide insight into the notion of nonlocal metastability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
536.
For any field 𝕂 and integer n ≥ 2, we consider the Leavitt algebra L 𝕂(n); for any integer d ≥ 1, we form the matrix ring S = M d (L 𝕂(n)). S is an associative algebra, but we view S as a Lie algebra using the bracket [a, b] = ab ? ba for a, b ∈ S. We denote this Lie algebra as S ?, and consider its Lie subalgebra [S ?, S ?]. In our main result, we show that [S ?, S ?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1 and char(𝕂) does not divide d. In particular, when d = 1, we get that [L 𝕂(n)?, L 𝕂(n)?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1.  相似文献   
537.
538.
The title mol­ecule, 2′‐pyrenyl­spiro­[2,3‐di­hydro‐1H‐cyclo­penta­[b]­naphthalene‐2,5′‐1′,3′‐dioxane]‐4,9‐dione, C32H22O4, contains an electron‐donating pyrene group spiro‐linked to an electron‐accepting naphtho­quinone. The mol­ecules are V‐shaped in profile and stack to form columns along b with alternating, approximately coplanar, pyrene and naphtho­quinone fragments. Intermolecular contacts within a column are consistent with some degree of π contact and possible long‐range delocalization. Individual columns form a herringbone pattern when the crystal is viewed along b .  相似文献   
539.
Let S be a finite set of points in the plane and let be the set of intersection points between pairs of lines passing through any two points in S. We characterize all configurations of points S such that iteration of the above operation produces a dense set. We also discuss partial results on the characterization of those finite point-sets with rational coordinates that generate all of through iteration of .  相似文献   
540.
A new approach for the divergent total syntheses of (±)‐vincaminorine, (±)‐N‐methylquebrachamine, (±)‐quebrachamine, (±)‐minovine and (±)‐vincadifformine, each in less than 10 linear steps starting from a single δ‐lactam building block, is reported. Key to our route design is the late‐stage generation of reactive enamine functionality from stable indole‐linked δ‐lactams via a highly chemoselective iridium(I)‐catalyzed reduction. The efficiently formed secodine intermediates subsequently undergo either a formal Diels–Alder cycloaddition or a competitive Michael addition/reduction to access aspidosperma‐type alkaloids in excellent diastereoselectivities. Product selectivity could be controlled by changing the indole N‐protecting group in the reductive cyclization precursors. An asymmetric variant of this synthetic strategy for the synthesis of (+)‐20‐epi‐ibophyllidine is also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号