Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches. 相似文献
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity. 相似文献
Extended multiplicative signal correction (EMSC) is a widely used preprocessing technique in infrared spectroscopy. EMSC is a model-based method favored for its flexibility and versatility. The model can be extended by adding constituent spectra to explicitly model-known analytes or interferents. This paper addresses the use of constituent spectra and demonstrates common pitfalls. It clarifies the difference between analyte and interferent spectra, and the importance of orthogonality between model spectra. Different normalization approaches are discussed, and the importance of weighting in the EMSC is demonstrated. The paper illustrates how constituent analyte spectra can be estimated, and how they can be used to extract additional information from spectral features. It is shown that the EMSC parameters can be used in both regression tasks and segmentation tasks. 相似文献
The paper summarizes results achieved in the Institute of Radio Engineering and Electronics in the field of investigation
and fabrication of novel fiber-optic structures for evanescent-wave chemical sensing. Several approaches for increasing the
evanescent-wave sensitivity of multimode silica optical fibers to gaseous and liquid chemicals are shown. These approaches
make use of the decrease of the core diameter in sectorial and capillary sectorial fibers, modification of trajectories of
optical rays in the cores of inverted-graded-index fibers, tailoring of the refractive index of porous layers applied on silica
cores, an output mode filter preventing the detection of rays propagating at low axial angles or fibers bent in single or
multiple turns.
Presented at the 1st Czech-Chinese Workshop “Advanced Materials for Optoelectronics”, Prague, Czech Republic, June 13–17,
1998.
This work was supported by the Grant Agency of the Czech Republic (projects No. 102/96/0939 and No. 102/98/1358) and by joint
project No. 4104 of AS CR and CNRS, France. 相似文献
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state. 相似文献
The main purpose of this work is to study the damping effect of memory terms associated with singular convolution kernels on the asymptotic behavior of the solutions of second order evolution equations in Hilbert spaces. For kernels that decay exponentially at infinity and possess strongly positive definite primitives, the exponential stability of weak solutions is obtained in the energy norm. It is also shown that this theory applies to several examples of kernels with possibly variable sign, and to a problem in nonlinear viscoelasticity. 相似文献
A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem?=?527 nm, Φ?=?0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of ? 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (~70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (~ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.
In this article the authors give the relation between a finitely-generated torsionfree Dedekind module M over a domain R and prime submodules of the 𝒪(M)-module M and the ring 𝒪(M). They also prove that M is a finitely-generated torsionfree Dedekind module over a domain R if and only if every semi-maximal submodule of R-module M is invertible. 相似文献
The catalytic networks of methylotrophic organisms, featuring redox enzymes for the activation of one‐carbon moieties, can serve as great inspiration in the development of novel homogeneously catalyzed pathways for the interconversion of C1 molecules at ambient conditions. An imidazolium‐tagged arene–ruthenium complex was identified as an effective functional mimic of the bacterial formaldehyde dismutase, which provides a new and highly selective route for the conversion of formaldehyde to methanol in absence of any external reducing agents. Moreover, secondary amines are reductively methylated by the organometallic dismutase mimic in a redox self‐sufficient manner with formaldehyde acting both as carbon source and reducing agent. 相似文献