首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467879篇
  免费   5090篇
  国内免费   1579篇
化学   248287篇
晶体学   7130篇
力学   20443篇
综合类   11篇
数学   55583篇
物理学   143094篇
  2021年   3151篇
  2020年   3569篇
  2019年   3751篇
  2018年   4384篇
  2017年   4206篇
  2016年   7094篇
  2015年   5095篇
  2014年   7420篇
  2013年   21102篇
  2012年   16196篇
  2011年   19954篇
  2010年   12967篇
  2009年   12901篇
  2008年   18153篇
  2007年   18524篇
  2006年   17848篇
  2005年   16065篇
  2004年   14681篇
  2003年   12986篇
  2002年   12705篇
  2001年   14353篇
  2000年   11069篇
  1999年   8757篇
  1998年   7048篇
  1997年   6955篇
  1996年   6784篇
  1995年   6215篇
  1994年   5882篇
  1993年   5673篇
  1992年   6353篇
  1991年   6211篇
  1990年   5937篇
  1989年   5614篇
  1988年   5887篇
  1987年   5638篇
  1986年   5329篇
  1985年   7511篇
  1984年   7739篇
  1983年   6294篇
  1982年   6801篇
  1981年   6778篇
  1980年   6464篇
  1979年   6596篇
  1978年   6767篇
  1977年   6758篇
  1976年   6752篇
  1975年   6477篇
  1974年   6348篇
  1973年   6562篇
  1972年   3987篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
We report the addition of M–H bonds (M = Al, Zn, Mg) to a Rh(iii) intermediate generated from the reductive elimination of triethylsilane from [Cp*Rh(H)2(SiEt3)2]. A series of new heterobimetallic complexes possessing Rh–M bonds have been isolated and characterised by a number of spectroscopic (1H, 29Si, 13C, 103Rh NMR, infrared, and X-ray diffraction) and computational techniques (NBO and QTAIM analysis). Experimental and computational data are consistent with cleavage of the M–H bond upon addition to rhodium with formation of new Rh–M and Rh–H bonds. Upon photolysis the Al analogue of this series undergoes a further elimination reaction producing triethylsilane and a highly unusual Rh2Al2H4 containing cluster proposed to contain an Al(i) bridging ligand.  相似文献   
104.
A new set of [Cu(phen)2]+ based rotaxanes, featuring [60]-fullerene as an electron acceptor and a variety of electron donating moieties, namely zinc porphyrin (ZnP), zinc phthalocyanine (ZnPc) and ferrocene (Fc), has been synthesized and fully characterized with respect to electrochemical and photophysical properties. The assembly of the rotaxanes has been achieved using a slight variation of our previously reported synthetic strategy that combines the Cu(i)-catalyzed azide–alkyne cycloaddition reaction (the “click” or CuAAC reaction) with Sauvage''s metal-template protocol. To underline our results, complementary model rotaxanes and catenanes have been prepared using the same strategy and their electrochemistry and photo-induced processes have been investigated. Insights into excited state interactions have been afforded from steady state and time resolved emission spectroscopy as well as transient absorption spectroscopy. It has been found that photo-excitation of the present rotaxanes triggers a cascade of multi-step energy and electron transfer events that ultimately leads to remarkably long-lived charge separated states featuring one-electron reduced C60 radical anion (C60˙) and either one-electron oxidized porphyrin (ZnP˙+) or one-electron oxidized ferrocene (Fc˙+) with lifetimes up to 61 microseconds. In addition, shorter-lived charge separated states involving one-electron oxidized copper complexes ([Cu(phen)2]2+ (τ < 100 ns)), one-electron oxidized zinc phthalocyanine (ZnPc˙+; τ = 380–560 ns), or ZnP˙+ (τ = 2.3–8.4 μs), and C60˙ have been identified as intermediates during the sequence. Detailed energy diagrams illustrate the sequence and rate constants of the photophysical events occurring with the mechanically-linked chromophores. This work pioneers the exploration of mechanically-linked systems as platforms to position three distinct chromophores, which are able to absorb light over a very wide range of the visible region, triggering a cascade of short-range energy and electron transfer processes to afford long-lived charge separated states.  相似文献   
105.
It is known that T cells can eliminate tumour cells through recognition of unique or aberrantly expressed antigens presented as peptide epitopes by major histocompatibility complex (MHC) molecules on the tumour cell surface. With recent advances in defining tumour-associated antigens, it should now be possible to devise therapeutic vaccines that expand specific populations of anti-tumour T cells. However there remains a need to develop simpler efficacious synthetic vaccines that possess clinical utility. We present here the synthesis and analysis of vaccines based on conjugation of MHC-binding peptide epitopes to α-galactosylceramide, a glycolipid presented by the nonpolymorphic antigen-presenting molecule CD1d to provoke the stimulatory activity of type I natural killer T (NKT) cells. The chemical design incorporates an enzymatically cleavable linker that effects controlled release of the active components in vivo. Chemical and biological analysis of different linkages with different enzymatic targets enabled selection of a synthetic vaccine construct with potent therapeutic anti-tumour activity in mice, and marked in vitro activity in human blood.  相似文献   
106.
107.
108.
Heteropoly acids (HPA) attract the attention of large variety of scientists, due to HPA’s extraordinary interesting properties and possible application fields. 12-tungstosilicic acid (WSiA), the Keggin type HPA, has some promising characteristic to be used in catalytic processes, but with not well-defined stability. Raman spectroscopy was used for in situ analysis of WSiA hydrolysis in detail in a wide pH range of 1–12. Raman spectroscopy is able to give an almost immediate response/spectrum as a representation of the exact profile/composition of the solution. This method and FTIR spectroscopy, as a complementary technique, enabled recording of the solid and liquid phases of the same sample under different conditions. Our results confirm that the decomposition pathways of WSiA in solution proceed via the formation of the lacunary monovacant anion at pH > 6.4. This anion is a major constituent in pH range up to 9.5. With further increases in pH this species convert to the trivacant lacunary anion. The total decomposition of the Keggin anion to silicate and tungstate occurs at pH > 11.0. The results of the performed study contribute to understand the behavior of WSiA in the water–methanol solution, as the model system of aqueous-organic system. It is concluded that addition of methanol in aqueous solution of WSiA leads to expansion of the pH region where Keggin anion is stable up to 8.1 and above this pH value, precipitation occurs. The obtained data clarify the stability range of WSiA in both water and water–methanol solutions, as well.  相似文献   
109.
Hydrogen sulfide (H2S) has emerged as an important biological signaling molecule in the last decade. During the growth of this field, significant controversy has arisen centered on the physiological concentrations of H2S. Recently, a monobromobimane (mBB) method has been developed for the quantification of different biologically-relevant sulfide pools. Based on the prevalence of the mBB method for sulfide quantification, we expand on this method to report the use of dibromobimane (dBB) for sulfide quantification. Reaction of H2S with dBB results in formation of highly-fluorescent bimane thioether (BTE), which is readily quantifiable by HPLC. Additionally, the reaction of sulfide with dBB to form BTE is significantly faster than the reaction of sulfide with mBB to form sulfide dibimane. Using the dBB method, BTE levels as low as 0.6 pM can be detected. Upon use of the dBB method in wild-type and CSE–/– mice, however, dBB reports significantly higher sulfide levels than those measured using mBB. Further investigation revealed that dBB is able to extract sulfur from other sulfhydryl sources including thiols. Based on mechanistic studies, we demonstrate that dBB extracts sulfur from thiols with α- or β-hydrogens, thus leading to higher BTE formation than from sulfide alone. Taken together, the dBB method is a highly sensitive method for H2S but is not compatible for use in studies in which other thiols are present.  相似文献   
110.
Photochemical approaches afford high spatiotemporal control over molecular structure and function, for broad applications in materials and biological science. Here, we present the first example of a visible light responsive ruthenium-based photolinker, Ru(bipyridine)2(3-ethynylpyridine)2 (RuBEP), which was reacted stoichiometrically with a 25mer DNA or morpholino (MO) oligonucleotide functionalized with 3′ and 5′ terminal azides, via Cu(i)-mediated [3+2] Huisgen cycloaddition reactions. RuBEP-caged circular morpholinos (Ru-MOs) targeting two early developmental zebrafish genes, chordin and notail, were synthesized and tested in vivo. One-cell-stage zebrafish embryos microinjected with Ru-MO and incubated in the dark for 24 h developed normally, consistent with caging, whereas irradiation at 450 nm dissociated one 3-ethynylpyridine ligand (Φ = 0.33) and uncaged the MO to achieve gene knockdown. As demonstrated, Ru photolinkers provide a versatile method for controlling structure and function of biopolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号