首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382271篇
  免费   3874篇
  国内免费   1158篇
化学   200843篇
晶体学   6225篇
力学   17009篇
综合类   9篇
数学   42016篇
物理学   121201篇
  2019年   2999篇
  2018年   4618篇
  2017年   4591篇
  2016年   6146篇
  2015年   4007篇
  2014年   5866篇
  2013年   16172篇
  2012年   12379篇
  2011年   14712篇
  2010年   9979篇
  2009年   9900篇
  2008年   13022篇
  2007年   13208篇
  2006年   12609篇
  2005年   13716篇
  2004年   12779篇
  2003年   10571篇
  2002年   9128篇
  2001年   11080篇
  2000年   8553篇
  1999年   6726篇
  1998年   5320篇
  1997年   5407篇
  1996年   5105篇
  1995年   4722篇
  1994年   4491篇
  1993年   4301篇
  1992年   5053篇
  1991年   4943篇
  1990年   4832篇
  1989年   4703篇
  1988年   4694篇
  1987年   4734篇
  1986年   4355篇
  1985年   5828篇
  1984年   6045篇
  1983年   4980篇
  1982年   5293篇
  1981年   5202篇
  1980年   5025篇
  1979年   5213篇
  1978年   5527篇
  1977年   5382篇
  1976年   5367篇
  1975年   5033篇
  1974年   4943篇
  1973年   5093篇
  1972年   3358篇
  1968年   2974篇
  1967年   3186篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
43.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
44.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
45.
Seven new copper(II) complexes of type [Cu(A)(L)]?H2O (A = sparfloxacin, ciprofloxacin, levofloxacin, gatifloxacin, pefloxacin, ofloxacin, norfloxacin; L = 5‐[(3‐chlorophenyl)diazenyl]‐4‐hydroxy‐1,3‐thiazole‐2(3H)‐thione) were synthesized and characterized using elemental and thermogravimetric analyses, and electronic, electron paramagnetic resonance (EPR), Fourier transform infrared and liquid chromatography–mass spectroscopies. Tetrahedral geometry around copper is assigned in all complexes using EPR and electronic spectral analyses. All complexes were investigated for their interaction with herring sperm DNA utilizing absorption titration (Kb = 1.27–3.13 × 105 M?1) and hydrodynamic volume measurement studies. The studies suggest the classical intercalative mode of DNA binding. The cleavage reaction on pUC19 DNA was monitored by agarose gel electrophoresis. The results indicate that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA. The superoxide dismutase mimic activity of the complexes was evaluated by nitroblue tetrazolium assay, and the complexes catalysed the dismutation of superoxide at pH = 7.8 with IC50 values in the range 0.597–0.900 μM. The complexes were screened for their in vitro antibacterial activity against five pathogenic bacteria. All the complexes are good cytotoxic agents and show LC50 values ranging from 5.559 to 11.912 µg ml?1. All newly synthesized Cu(II) complexes were also evaluated for their in vitro antimalarial activity against Plasmodium falciparum strain (IC50 = 0.62–2.0 µg ml?1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
46.
47.
48.
49.
Russian Journal of General Chemistry - The main sources of emissions of industrial nitrogen oxides have been reviewed. A promising method for the absorption of nitrogen monoxide by a reusable...  相似文献   
50.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号