首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480787篇
  免费   5023篇
  国内免费   1432篇
化学   242228篇
晶体学   7755篇
力学   22928篇
综合类   12篇
数学   57843篇
物理学   156476篇
  2021年   4193篇
  2020年   4551篇
  2019年   5120篇
  2018年   6917篇
  2017年   7007篇
  2016年   9882篇
  2015年   5832篇
  2014年   9516篇
  2013年   22571篇
  2012年   17537篇
  2011年   21025篇
  2010年   15208篇
  2009年   15090篇
  2008年   18927篇
  2007年   18974篇
  2006年   17758篇
  2005年   15532篇
  2004年   14467篇
  2003年   12825篇
  2002年   12695篇
  2001年   14853篇
  2000年   11198篇
  1999年   8710篇
  1998年   7240篇
  1997年   7072篇
  1996年   6631篇
  1995年   5856篇
  1994年   5738篇
  1993年   5530篇
  1992年   6169篇
  1991年   6331篇
  1990年   6087篇
  1989年   5854篇
  1988年   5698篇
  1987年   5818篇
  1986年   5479篇
  1985年   6973篇
  1984年   7214篇
  1983年   5957篇
  1982年   6190篇
  1981年   5940篇
  1980年   5795篇
  1979年   6091篇
  1978年   6211篇
  1977年   6206篇
  1976年   6266篇
  1975年   5844篇
  1974年   5803篇
  1973年   5971篇
  1972年   4072篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
993.
994.
For three‐dimensional flows with one inhomogeneous spatial coordinate and two periodic directions, the Karhunen–Loeve procedure is typically formulated as a spatial eigenvalue problem. This is normally referred to as the direct method (DM). Here we derive an equivalent formulation in which the eigenvalue problem is formulated in the temporal coordinate. It is shown that this so‐called method of snapshots (MOS) has some numerical advantages when compared to the DM. In particular, the MOS can be formulated purely as a matrix composed of scalars, thus avoiding the need to construct a matrix of matrices as in the DM. In addition, the MOS avoids the need for so‐called weight functions, which emerge in the DM as a result of the non‐uniform grid typically employed in the inhomogeneous direction. The avoidance of such weight functions, which may exhibit singular behaviour, guarantees satisfaction of the boundary conditions. The MOS is applied to data sets recently obtained from the direct simulation of turbulence in a channel in which viscoelasticity is imparted to the fluid using a Giesekus model. The analysis reveals a steep drop in the dimensionality of the turbulence as viscoelasticity is increased. This is consistent with the results that have been obtained with other viscoelastic models, thus revealing an essential generic feature of polymer‐induced drag reduced turbulent flows. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   
995.
A new grid‐free upwind relaxation scheme for simulating inviscid compressible flows is presented in this paper. The non‐linear conservation equations are converted to linear convection equations with non‐linear source terms by using a relaxation system and its interpretation as a discrete Boltzmann equation. A splitting method is used to separate the convection and relaxation parts. Least squares upwinding is used for discretizing the convection equations, thus developing a grid‐free scheme which can operate on any arbitrary distribution of points. The scheme is grid free in the sense that it works on any arbitrary distribution of points and it does not require any topological information like elements, faces, edges, etc. This method is tested on some standard test cases. To explore the power of the grid‐free scheme, solution‐based adaptation of points is done and the results are presented, which demonstrate the efficiency of the new grid‐free scheme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
996.
Secondary ion emission from Fe-Cr, Fe-Ni, Cr-Ni binary alloys and Fe-Cr-Ni ternary alloys (concentration range 10–90% of the alloying element) bombarded with 3 keV Xe+ ions has been investigated as a function of concentration of the studied element in the multicomponent system. The linear increase of the secondary ion intensity with concentration of the element in the sample was found only for a low-concentration region. There are pronounced nonlinearities in the medium and high-concentration regions. A possible explanation for such nonlinearities based on chemical and physical matrix effects is proposed.  相似文献   
997.
998.
999.
The paper examines the problem related to the axisymmetric interaction between an external circular crack and a centrally placed penny-shaped rigid inclusion located in the plane of the crack. The interface between the inclusion and the elastic medium exhibits a Mindlin-type imperfect bi-lateral contact. Analytical results presented in the paper illustrate the manner in which the lateral translational stiffness of the inclusion and the stress intensity factor at the boundary of the external circular crack are influenced by the inclusion/crack radii ratio.  相似文献   
1000.
Based on the discrete-structural theory of thin plates and shells, a calculation model for thin-walled elements consisting of a number of rigid anisotropic layers is put forward. It is assumed that the transverse shear and compression stresses are equal on the interfaces. Elastic slippage is allowed over the interfaces between adjacent layers. The solution to the problem is obtained in a geometrically nonlinear statement with account of the influence of transverse shear and compression strains. The stress-strain state of circular two-layer transversely isotropic plates, both without defects and with a local area of adhesion failure at their center, is investigated numerically and experimentally. It is found that the kinematic and static contact conditions on the interfaces of layered thin-walled structural members greatly affect the magnitude of stresses and strains. With the use of three variants of calculation models, in the cases of perfect and weakened contact conditions between layers, the calculation results for circular plates are compared. It is revealed that the variant suggested in this paper adequately reflects the behavior of layered thin-walled structural elements under large deformations. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 6, pp. 761–772, November–December, 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号