Green carbanion surrogates : Organotrialkylsilanes occupy a niche in the array of ‘green’ carbon nucleophiles open to chemists that few other reagents can fill. Despite being known for over 30 years, it is only recently that their true worth in stereoselective carbonyl addition and related processes has started to emerge, primarily due to their low reactivity. It is our hope that this minireview will make the true worth of these reagents more widely known, setting the stage for expanded usage of these versatile yet benign reagents in organic synthesis.
A hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) method using multiple scan modes was developed to separate and quantify 11 compounds and lipid classes including acetylcholine (AcCho), betaine (Bet), choline (Cho), glycerophosphocholine (GPC), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphocholine (PCho) and sphingomyelin (SM). This includes all of the major choline-containing compounds found in foods. The method offers advantages over other LC methods since HILIC chromatography is readily compatible with electrospray ionization and results in higher sensitivity and improved peak shapes. The LC-MS/MS method allows quantification of all choline-containing compounds in a single run. Tests of method suitability indicated linear ranges of approximately 0.25-25 μg/ml for PI and PE, 0.5-50 μg/ml for PC, 0.05-5 μg/ml for SM and LPC, 0.5-25 μg/ml for LPE, 0.02-5 μg/ml for Cho, and 0.08-8 μg/ml for Bet, respectively. Accuracies of 83-105% with precisions of 1.6-13.2% RSD were achieved for standards over a wide range of concentrations, demonstrating that this method will be suitable for food analysis. 8 polar lipid classes were found in a lipid extract of egg yolk and different species of the same class were differentiated based on their molecular weights and fragment ion information. PC and PE were found to be the most abundant lipid classes consisting of 71% and 18% of the total phospholipids in egg yolk. 相似文献
To overcome the unfavorable steric pressures associated with 2,6-disubstitution in encumbering pyridine ligands, the coordination chemistry of a 2,5-disubstituted variant, namely, 2,5-dimesitylpyridine (2,5-Mes(2)py), is reported. This diaryl pyridine shows good binding ability to a range of transition-metal fragments with varying formal oxidation states and coligands. Treatment of 2.0 equiv of 2,5-Mes(2)py with monovalent Cu and Ag triflate sources generates complexes of the type [M(2,5-Mes(2)py)(2)]OTf (M = Cu, Ag; OTf = OSO(2)CF(3)), which feature long M-OTf distances and a substrate-accessible primary coordination sphere. Combination of 2,5-Mes(2)py with Cu(OTf)(2) and Pd(OAc)(2) produces four-coordinate complexes featuring cis- and trans-2,5-Mes(2)py orientations, respectively. The four-coordinate palladium complex Pd(OAc)(2)(2,5-Mes(2)py)(2) is found to resist py-ligand dissociation at room temperature in solution, but functions as a precatalyst for the aerobic C-H bond olefination of benzene at elevated temperatures. This C-H bond activation chemistry is compared with a similar Pd-based system featuring 2,6-disubstituted pyridines. 2,5-Mes(2)py also readily supports mono- and dinuclear divalent Co complexes, and the solution-phase equilibria between such species are detailed. The coordination studies presented highlight the potential of 2,5-Mes(2)py to function as an encumbering ancillary for the stabilization of low-coordinate complexes and as a supporting ligand for metal-mediated transformations. 相似文献
We report the synthesis of Ag-Au alloy gradients on stainless steel substrates using bipolar electrodeposition (BP-ED), a technique based on the existence of a potential gradient at the interface of a bipolar electrode (BPE) and an electrolytic solution. The interfacial potential gradient causes the rates of electrodeposition of Ag and Au to vary along the length of the BPE, leading to the electrodeposition of a chemical concentration gradient. The surface morphology of the electrodeposits was characterized using scanning electron microscopy (SEM), and their chemical composition was determined using energy dispersive X-ray spectroscopy (EDX). Self-assembled monolayers of a Raman-active probe molecule (benzene thiol) were allowed to form on the surface of the alloy gradients, and confocal Raman microscopy was employed to determine the alloy composition that resulted in the maximum surface enhanced Raman scattering (SERS) intensity. An alloy composition of ca. 70% Ag/30% Au was found to be optimum for SERS excited using 514.5 nm radiation, and it is explained on the basis of composition-dependent changes in the local surface plasmon resonance (LSPR) of the electrodeposited Ag-Au alloy. 相似文献
Osmotic pressures have been measured to determine lysozyme—lysozyme,BSA—BSA, and lysosyme—BSA interactions for protein concentrations to 100 g-L–1in an aqueous solution of ammonium sulfate at ambient temperature, as a functionof ionic strength and pH. Osmotic second virial coefficients for lysozyme, forBSA, and for a mixture of BSA and lysozyme were calculated from theosmotic-pressure data for protein concentrations to 40 g-L–1. The osmotic second virialcoefficient of lysozyme is slightly negative and becomes more negative withrising ionic strength and pH. The osmotic second virial coefficient for BSA isslightly positive, increasing with ionic strength and pH. The osmotic second virialcross coefficient of the mixture lies between the coefficients for lysozyme andBSA, indicating that the attractive forces for a lysozyme—BSA pair areintermediate between those for the lysozyme—lysozyme and BSA—BSA pairs. For proteinconcentrations less than 100 g-L–1, experimental osmotic-pressure data comparefavorably with results from an adhesive hard-sphere model, which has previouslybeen shown to fit osmotic compressibilities of lysozyme solutions. 相似文献
Significant - interaction is found in the complexes of (S, S)-dimethylpyridino-18-crown-6 with (R)- and (S)-[-(1-naphthyl)ethyl]ammonium perchlorate. This finding is supported by the1H NOESY NMR spectral technique, greater chemical shift changes of aromatic protons in both host and guest molecules upon complexation, and by molecular mechanics calculations. Because of the flexibility of the ligand, the tripod hydrogen bonding causes13C relaxation times of all periphery carbons to decrease without significant selectivity. Rotational energy barrier calculations of the methyl groups of the complexed ligand also show that the (S, S)-host-(R)-guest is the more stable complex. 相似文献
A mass spectrometric method of distinguishing between molecular ions of the three isomeric xylenes (dimethylbenzenes) was sought, in light of recent findigs that photoexcited ions could be distinguished via measurements of kinetic energy release accompanying expulsion of a methyl radical. Provided the molecular ions are formed with low internal energies, reproducible differences were found between relative intensities of collision induced reactions of higher critical energies, than for methyl expulsion. These differences exist both for collision energies in the kilovolt range (double focusing mass spectrometers) and in the range of a few tens of volts (triple quadrupole instrument). Though statistically significant, these differences were small. The mechanism of isomerization and fragmentation was investigated via isotopic labelling studies and measurements of kinetic energy release. Most of the present findings can be rationalized in terms of the most recent version of established mechanisms for reactions of ionized methylbenzenes. 相似文献