首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   52篇
  国内免费   12篇
化学   610篇
晶体学   6篇
力学   27篇
数学   224篇
物理学   176篇
  2024年   1篇
  2023年   16篇
  2022年   15篇
  2021年   44篇
  2020年   26篇
  2019年   22篇
  2018年   20篇
  2017年   25篇
  2016年   45篇
  2015年   44篇
  2014年   47篇
  2013年   94篇
  2012年   68篇
  2011年   85篇
  2010年   55篇
  2009年   49篇
  2008年   52篇
  2007年   70篇
  2006年   45篇
  2005年   58篇
  2004年   44篇
  2003年   21篇
  2002年   19篇
  2001年   6篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1043条查询结果,搜索用时 31 毫秒
11.
The possibility to prepare hybrids made by poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA) and/or poly(ethyl acrylate) (PEtA) with TiO2 was studied. The processes of polymer formation-radical polymerization and sol-gel process for inorganic network —were achieved simultaneously. Due to a high reactivity of titanium isopropoxide (TIP) in the sol-gel process, a complexant comonomer, allyl acetoacetate (AlAcAc), was used. Covalent bonds between polymer and inorganic chains were obtained by addition of trialkoxysilane derivates with vinyl (VTES) or methacryloyl (MPTS) groups. The presence of TIP inhibits the radical polymerization of vinyl acetate (VAc). The PVAc-TiO2 hybrids were produced by the sol-gel process of TIP in the presence of pre-obtained PVAc. Except for VTES and MPTS, trialkoxysilane derivates with methyl (MeTES), octyl (OTES) and phenyl (PTES) groups were used. The thermal stability of hybrids is strongly affected by TiO2 presence and by the type of trialkoxysilane derivates. The thermal stability of PVAc hybrids decreases in the presence of TiO2 inorganic network. The glass transition temperature of polymers increases in the presence of the inorganic network.  相似文献   
12.
While advances in protein design have made possible the construction of protein architectures with nativelike properties and predictable structures and function, there are as of yet no examples of functional, protein-based, solar energy conversion systems. This communication describes the design and characterization of an artificial reaction center (RC) protein that closely resembles the function of the natural photosynthetic RC. The synthetic protein, designed by the protein design program CORE, participates in multiple reduction/oxidation cycles with exogenous acceptors/donors following photoexcitation. The designed metalloprotein, aRC, consists of a tetrahelical bundle functionalized with two bis-histidine bound metal cofactors: a Ru(bpy)2 moiety and a heme group. Two distinct bis-histidine binding sites were engineered for each of these metal centers. Photoexcitation of aRC results in rapid ET from the RuII complex to the heme group (kET >/= 5 x 1010 s-1) yielding a long-lived (70 ns) charge-separated state (CSS), RuIII/FeII. This long-lived CSS participates in subsequent ET reactions with exogenous donors and acceptors in multiple photocycles, thus mimicking the basic function of native photosynthetic RCs. This study illustrates the successful design and construction of a protein-based functional charge separation device using a combination of automated computational protein design and knowledge of the engineering principles of biological electron tunneling extracted from natural electron-transfer systems. To our knowledge, this represents the first example of a functional protein-based artificial reaction center.  相似文献   
13.
The reactions between PhHgCl or PhHgAc and M[(XPR2)(YPR′2)N] (M=Na, K; X, Y=O, S; R, R′=Me, Ph, OEt), in 1:1 molar ratio, have been investigated. PhHg[(XPR2)(YPR′2)N] derivatives were isolated as microcrystalline powders and were characterised using IR and NMR (1H, 13C and 31P) spectroscopy and mass spectrometry. The molecular structure of PhHg[(OPR2)(SPPh2)N] [R=Me (1), Ph (2)] was investigated by X-ray diffraction. In the monomeric unit, PhHg[(OPR2)(SPPh2)N], the mercury atom forms the primary bonds with the carbon of the phenyl group and the sulfur atom of the phosphorus ligand [Hg(1)-S(1) 2.405(1) Å for 1, 2.398(2) Å for 2]. These primary bonds are significantly deviated from the expected linear arrangement [C(1)-Hg(1)-S(1) 166.4(2)° for 1, 165.0(2)° for 2]. Both compounds exhibit dimeric associations in the crystal through S,O-bridging organophosphorus ligands [Hg(1)-O(1) 2.556(4) Å for 1, 2.588(4) Å for 2], thus resulting in a distorted T-shaped arrangement of the CHgSO coordination core.. The formation of a 12-membered Hg2O2S2P4N2 ring with different conformation in 1 and 2, respectively, results in different additional chalcogen atoms being in the proximity of the metal atom. Weak transannular Hg?O [2.753(4) Å] are also established in 1, leading to a tricyclic ladder structure with a planar central Hg2O2 ring.  相似文献   
14.
Journal of Optimization Theory and Applications - In this paper, we propose a numerical approach for solving composite primal-dual monotone inclusions with a priori information. The underlying a...  相似文献   
15.
In this paper we consider a family of convex sets in , , , , satisfying certain axioms of affine invariance, and a Borel measure satisfying a doubling condition with respect to the family The axioms are modelled on the properties of the solutions of the real Monge-Ampère equation. The purpose of the paper is to show a variant of the Calderón-Zygmund decomposition in terms of the members of This is achieved by showing first a Besicovitch-type covering lemma for the family and then using the doubling property of the measure The decomposition is motivated by the study of the properties of the linearized Monge-Ampère equation. We show certain applications to maximal functions, and we prove a John and Nirenberg-type inequality for functions with bounded mean oscillation with respect to

  相似文献   

16.
Aqueous solutions of Au colloids (12 +/- 4 nm size) when treated with a blend of mono- and dithiols aggregate forming stable clusters, as evidenced by the shift of their surface plasmon (SP) band from 512 to ca. 600 nm. The presence of carboxylate ester functions on the dithiol allows its cleavage by addition of a cleaving agent, such as hydrazine. The cleavage process results in the breaking down of the clusters of nanoparticles and the shift of the SP band back to lower wavelengths. Further addition of dithiol causes the formation of the clusters again. The aggregation/deaggregation process may be monitored visually by following the color change from pink-red to purple and vice versa in the forward and backward steps, respectively.  相似文献   
17.
Ab initio ground state potential energy surfaces are obtained from interaction energies calculated with the coupled cluster singles and doubles model including connected triples corrections [CCSD(T)] and the aug-cc-pVXZ (X=5,Q,T,D) basis sets augmented with two different sets of midbond functions (denoted 33221 and 33211). The aug-cc-pV5Z-33221 surface is characterized by a T-shaped 49.5 cm(-1) minimum at Re=3.38 Angstroms and a linear saddle point at 3.95 Angstroms with De=36.6 cm(-1). These results agree well with the values provided by the accurate semiempirical potentials available. The rovibronic spectroscopic properties are determined and compared to the available experimental data and previous theoretical results. We study the basis set convergence of the intermolecular potentials and the rotational frequencies. The aug-cc-pVTZ basis sets provide reasonable binding parameters, but seem not to be converged enough for the evaluation of the microwave spectra. The aug-cc-pVQZ basis sets considerably improve the triple zeta results. The differences between the results obtained with the aug-cc-pVTZ-33221 basis set surface and those with the aug-cc-pVQZ-33221 are smaller than those of the corresponding bases with the set of 33211 midbond functions. The aug-cc-pVQZ surfaces are close to the aug-cc-pV5Z, that are expected to be close to convergence. With our best surfaces the errors in the frequencies with respect to the accurate experimental results go down to 0.6%.  相似文献   
18.
The biological function of the aspartic protease from HIV-1 has recently been related to the conformational flexibility of its structural scaffold. Here, we use a multistep strategy to investigate whether the same mechanism affects the functionality in the pepsin-like fold. (i) We identify the set of conserved residues by using sequence-alignment techniques. These residues cluster in three distinct regions: near the cleavage-site cavity, in the four beta-sheets cross-linking the two lobes, and in a solvent-exposed region below the long beta-hairpin in the N-terminal lobe. (ii) We elucidate the role played by the conserved residues for the enzymatic functionality of one representative member of the fold family, the human beta-secretase, by means of classical molecular dynamics (MD). The conserved regions exhibit little overall mobility and yet are involved into the most important modes of structural fluctuations. These modes influence the substrate-catalytic aspartates distance through a relative rotation of the N- and C-terminal lobes. (iii) We investigate the effects of this modulation by estimating the reaction free energy at different representative substrate/enzyme conformations. The activation free energy is strongly affected by large-scale protein motions, similarly to what has been observed in the HIV-1 enzyme. (iv) We extend our findings to all other members of the two eukaryotic and retroviral fold families by recurring to a simple, topology-based, energy functional. This analysis reveals a sophisticated mechanism of enzymatic activity modulation common to all aspartic proteases. We suggest that aspartic proteases have been evolutionarily selected to possess similar functional motions despite the observed fold variations.  相似文献   
19.
Near-UV irradiation of structurally characterized [Re(I)(CO)3(1,10-phenanthroline)(Q107H)](W48F/Y72F/H83Q/Y108W)AzM(II) [Az = Pseudomonas aeruginosa azurin, M = Cu, Zn]/[Co(NH3)5Cl]Cl2 produces a tryptophan radical (W108*) with unprecedented kinetic stability. After rapid formation (k = 2.8 x 106 s-1), the radical persists for more than 5 h at room temperature in the folded ReAzM(II) structure. The absorption spectrum of ReAz(W108*)M(II) exhibits maxima at 512 and 536 nm. Oxidation of K4[Mo(CN)8] by ReAz(W108*)Zn(II) places the W108*/W108 reduction potential in the protein above 0.8 V vs NHE.  相似文献   
20.
We introduce the concept of effective fraction, defined as the expected probability that a configuration from the lowest index replica successfully reaches the highest index replica during a replica exchange Monte Carlo simulation. We then argue that the effective fraction represents an adequate measure of the quality of the sampling technique, as far as swapping is concerned. Under the hypothesis that the correlation between successive exchanges is negligible, we propose a technique for the computation of the effective fraction, a technique that relies solely on the values of the acceptance probabilities obtained at the end of the simulation. The effective fraction is then utilized for the study of the efficiency of a popular swapping scheme in the context of parallel tempering in the canonical ensemble. For large dimensional oscillators, we show that the swapping probability that minimizes the computational effort is 38.74%. By studying the parallel tempering swapping efficiency for a 13-atom Lennard-Jones cluster, we argue that the value of 38.74% remains roughly the optimal probability for most systems with continuous distributions that are likely to be encountered in practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号