首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   40篇
  国内免费   11篇
化学   591篇
力学   24篇
数学   196篇
物理学   132篇
  2024年   1篇
  2023年   16篇
  2022年   27篇
  2021年   43篇
  2020年   22篇
  2019年   21篇
  2018年   20篇
  2017年   23篇
  2016年   43篇
  2015年   43篇
  2014年   43篇
  2013年   77篇
  2012年   64篇
  2011年   73篇
  2010年   51篇
  2009年   45篇
  2008年   47篇
  2007年   67篇
  2006年   40篇
  2005年   57篇
  2004年   39篇
  2003年   19篇
  2002年   15篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有943条查询结果,搜索用时 6 毫秒
51.
ABSTRACT

Two nanostructured hybrid materials are reported that include uncoated magnetic nanoiron oxides and magnetic nanoiron oxides treated with rose leaf extract. Atomic and molecular absorption spectrometry were used to evaluate the sensitivity of these materials for the isolation of Cr(VI), Zn(II), Pb(II), and Ca(II) from aqueous solution. The structure and physicochemical properties of the resulting nanohybrids were characterized by scanning electron microscopy coupled with energy-dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The results show that following 15?min of contact in acidic solution, the uncoated magnetic nanoiron oxides removed approximately 90% of Cr(VI), while the magnetic nanoiron oxides coated with rose leaf extract removed 92% of the analyte. These correspond to most industrial wastewater conditions. For the removal of Ca(II) and Zn(II), it was necessary to adjust the pH to neutral to maximize the efficiency. Pb(II) showed maximum removal efficiency when the solution is basic. The simple rose extract suspension was also used for metal removal with high capacity. The results demonstrate that the magnetic nanoiron oxides were uniformly distributed in the rose leaf extract. The extract served as a capping agent due to the presence of polyphenolics.  相似文献   
52.
Highly concentrated electrolyte solutions were studied through a Monte Carlo-based simulator, developed to consider the water molecules not a homogeneous dielectric as usual, but as dipoles that can move and rotate within a 3D lattice. This approach allowed fast calculations of detailed interactions between the particles, which were described from mechanistic potentials including dipole–dipole, ion–dipole, ion–ion, and hydrogen bonding (HB) interactions. A good agreement was found between experimental data and simulated results. The study also provides new insights about the balance of the different interactions in systems with or without electrolytes, and the effects of the electrolytes addition on the original water structure. The proposed model was also compared with previous explicit models.  相似文献   
53.
Currently there is a drive towards the minimisation and reclamation of valuable materials from the waste products of the food and beverage industry. This can be achieved through the extraction of residual nutraceuticals from such materials. Tomato pomace contains carotenoids and other chemicals which can be extracted directly into edible oils to improve the health-giving properties of such oils. We report here a novel green solvent, fatty acid ethyl esters (FAEE), which is significantly more effective than sunflower oil and hexane for the extraction of lycopene and beta-carotene from tomato skin waste. FAEE are a non-toxic renewable resource that is environmentally friendly and to our knowledge has never been used as a vegetal extraction fluid. The efficiency of FAEE extraction was significantly improved relative to both sunflower oil and hexane under ultrasound-assisted extraction (UAE) conditions. In addition, FAEE have the additional and significant advantage that once enriched with the extracted nutraceuticals can be used directly as a food additive.  相似文献   
54.
Halip  Liliana  Avram  Sorin  Neanu  Cristian 《Structural chemistry》2021,32(4):1693-1699
Structural Chemistry - In cheminformatics, protein-ligand docking is a powerful tool applied for virtual screening, pose prediction, and binding affinity estimation. However, docking results depend...  相似文献   
55.
The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R’ (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV–Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the “meta” and “para” positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.  相似文献   
56.
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.  相似文献   
57.
During the last decade, there has been a tremendous interest for developing non-natural biocompatible transformations in biologically relevant media. Among the different encountered strategies, the use of transition metal complexes offers unique possibilities due to their high transformative power. However, translating the potential of metal catalysts to biological settings, including living cells or small-animal models such as mice or zebrafish, poses numerous challenges associated to their biocompatibility, and their stability and reactivity in crowded aqueous environments. Herein, we describe the most relevant advances in this direction, with a particular emphasis on the systems’ structure, their mode of action and the mechanistic bases of each transformation. Thus, the key challenges from an organometallic perspective might be more easily identified.  相似文献   
58.
Cyclobis(paraquat-p-phenylene), also known as “blue box”, is a highly electron-deficient macrocycle, widely used as a molecular receptor for small electron-rich molecules. Inserting a reactive functional group onto the molecular structure of this cyclophane is paramount for its inclusion into complex architectures. To this aim, including an alkyne moiety would be ideal, because it can participate in click reactions. However, the synthesis of such alkyne-functionalized cyclophane suffers from several drawbacks: the use of toxic and expensive CCl4, the need for high-pressure reactors, and overall low yield. We have revised the existing synthesis of this cyclophane derivative bearing an alkyne moiety, to overcome all these limitations. In particular, photochemical radical bromination is adopted to obtain a sensitive intermediate. We demonstrated that the synthesized host molecule can be functionalized via click reactions and take part in radical-radical interactions. Our work makes a key functionalized paraquat macrocycle more accessible, facilitating the development of novel redox-responsive systems.  相似文献   
59.
In this study, we revealed the significance of chemical bonding for the photochemically induced mechanism of 2-phenyl tetrazole derivatives generating nitrile imines. The correlated electron localization function shows that the formation of imine nitrile involves two key bond events: (i) the heterolytic C−N breakage taking place in the T1 state and (ii) the homolytic N−N rupture occurring in the T2 excited state. In particular, a cation-radical specie results from the C−N cleavage, whereas the N−N rupture creates a biradical resonant form of imine nitrile. Additionally, we noticed that the substantial pair delocalization of the C−C-N bonded structure could play a significant role in the conversion of the biradical imine nitrile into both the propargylic and allenic forms via the T1→S0 deactivation.  相似文献   
60.
We developed a constituent quark-diquark model for the nucleon and its resonances using a harmonic oscillator potential for the interaction. The effects due to relativistic kinetic energy correction are studied. Finally, charge form factor of the model is calculated and compared with experimental data.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号