首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   21篇
  国内免费   3篇
化学   298篇
晶体学   3篇
力学   6篇
数学   41篇
物理学   39篇
  2023年   13篇
  2022年   10篇
  2021年   12篇
  2020年   16篇
  2019年   18篇
  2018年   11篇
  2017年   4篇
  2016年   15篇
  2015年   13篇
  2014年   21篇
  2013年   17篇
  2012年   42篇
  2011年   34篇
  2010年   21篇
  2009年   11篇
  2008年   22篇
  2007年   21篇
  2006年   20篇
  2005年   19篇
  2004年   12篇
  2003年   11篇
  2002年   7篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
41.
42.
The novel use of nanofibers as a physical barrier between blood and medical devices has allowed for modifiable, innovative surface coatings on devices ordinarily plagued by thrombosis, delayed healing, and chronic infection. In this study, the nitric oxide (NO) donor S‐nitrosoglutathione (GSNO) is blended with the biodegradable polymers polyhydroxybutyrate (PHB) and polylactic acid (PLA) for the fabrication of hemocompatible, antibacterial nanofibers tailored for blood‐contacting applications. Stress/strain behavior of different concentrations of PHB and PLA is recorded to optimize the mechanical properties of the nanofibers. Nanofibers incorporated with different concentrations of GSNO (10, 15, 20 wt%) are evaluated based on their NO‐releasing kinetics. PLA/PHB + 20 wt% GSNO nanofibers display the greatest NO release over 72 h (0.4–1.5 × 10?10 mol mg?1 min?1). NO‐releasing fibers successfully reduce viable adhered bacterial counts by ≈80% after 24 h of exposure to Staphylococcus aureus. NO‐releasing nanofibers exposed to porcine plasma reduce platelet adhesion by 64.6% compared to control nanofibers. The nanofibers are found noncytotoxic (>95% viability) toward NIH/3T3 mouse fibroblasts, and 4′,6‐diamidino‐2‐phenylindole and phalloidin staining shows that fibroblasts cultured on NO‐releasing fibers have improved cellular adhesion and functionality. Therefore, these novel NO‐releasing nanofibers provide a safe antimicrobial and hemocompatible coating for blood‐contacting medical devices.  相似文献   
43.
Liposomes are effective therapeutic delivery nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of therapeutics. Two primary areas in which improvement is needed for liposomal drug delivery is to enhance the ability to infiltrate cells and to facilitate derivatization of the liposome surface. Herein, we report a liposome platform incorporating a cyclic disulfide lipid (CDL) for the dual purpose of enhancing cell entry and functionalizing the liposome membrane through thiol-disulfide exchange. In order to accomplish this, CDL-1 and CDL-2 , composed of lipoic acid (LA) or asparagusic acid (AA) appended to a lipid scaffold, were designed and synthesized. A fluorescence-based microplate immobilization assay was implemented to show that these compounds enable convenient membrane decoration through reaction with thiol-functionalized small molecules. Additionally, fluorescence microscopy experiments indicated dramatic enhancements in cellular delivery when CDLs were incorporated within liposomes. These results demonstrate that multifunctional CDLs serve as an exciting liposome system for surface decoration and enhanced cellular delivery.  相似文献   
44.
45.
The macrostructures of synthetic polymers are essentially the complete molecular chain architectures, including the types and amounts of constituent short‐range microstructures, such as the regio‐ and stereosequences of the inserted monomers, the amounts and sequences of monomers found in co‐, ter‐, and tetra‐polymers, branching, inadvertent, and otherwise, etc. Currently, the best method for characterizing polymer microstructures uses high field, high resolution 13C‐nuclear magnetic resonance (NMR) spectroscopy observed in solution. However, even 13C‐NMR is incapable of determining the locations or positions of resident polymer microstructures, which are required to elucidate their complete macrostructures. The sequences of amino acid residues in proteins, or their primary structures, cannot be characterized by NMR or other short‐range spectroscopic methods, but only by decoding the DNA used in their syntheses or, if available, X‐ray analysis of their single crystals. Similarly, there are currently no experimental means to determine the sequences or locations of constituent microstructures along the chains of synthetic macromolecules. Thus, we are presently unable to determine their macrostructures. As protein tertiary and quaternary structures and their resulting ultimate functions are determined by their primary sequence of amino acids, so too are the behaviors and properties of synthetic polymers critically dependent on their macrostructures. We seek to raise the consciousness of both synthetic and physical polymer scientists and engineers to the importance of characterizing polymer macrostructures when attempting to develop structure–property relations. To help achieve this task, we suggest using the electrical birefringence or Kerr effects observed in their dilute solutions. The molar Kerr constants of polymer solutes contributing to the birefringence of their solutions, under the application of a strong electric field, are highly sensitive to both the types and locations of their constituent microstructures. As a consequence, we may begin to characterize the macrostructures of synthetic polymers by means of the Kerr effect. To simplify implementation of the Kerr effect to characterize polymer macrostructures, we suggest that NMR first be used to determine the types and amounts of constituent microstructures present. Subsequent comparison of observed Kerr effects with those predicted for different microstructural locations along the polymer chains can then be used to identify the most likely macrostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 155–166  相似文献   
46.
An untargeted metabolomics approach was used to investigate a cultured strain of Microcystis aeruginosa (UTEX LB2386) known to be a prolific producer of a diverse class of cyanopeptides. Identification of a putative new compound with a molecular weight of 996 led to the purification and structure elucidation of this new member of the micropeptin class of cyanopeptides. Micropeptin 996 displayed potent inhibition of the serine protease enzyme chymotrypisin relative to structurally related members of this class.  相似文献   
47.
We report boronate-caged guanidine-lipid 1 that activates liposomes for cellular delivery only upon uncaging of this compound by reactive oxygen species (ROS) to produce cationic lipid products. These liposomes are designed to mimic the exceptional cell delivery properties of cell-penetrating peptides (CPPs), while the inclusion of the boronate cage is designed to enhance selectivity such that cell entry will only be activated in the presence of ROS. Boronate uncaging by hydrogen peroxide was verified by mass spectrometry and zeta potential (ZP) measurements. A microplate-based fluorescence assay was developed to study the ROS-mediated vesicle interactions between 1 -liposomes and anionic membranes, which were further elucidated via dynamic light scattering (DLS) analysis. Cellular delivery studies utilizing fluorescence microscopy demonstrated significant enhancements in cellular delivery only when 1 -liposomes were incubated with hydrogen peroxide. Our results showcase that lipid 1 exhibits strong potential as an ROS-responsive liposomal platform for targeted drug delivery applications.  相似文献   
48.
Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate (in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.
Graphical Abstract ?
  相似文献   
49.
50.
Aggregation of alpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease (PD), is believed to progress through formation of a partially folded intermediate. Using nanoelectrospray ionization (nano-ESI) mass spectrometry combined with ion mobility measurements we found evidence for a highly compact partially folded family of structures for alpha-syn and its disease-related A53T mutant with net charges of -6, -7, and -8. For the other early onset PD mutant, A30P, this highly compact population was only evident when the protein had a net charge of -6. When bound to spermine near physiologic pH, all three proteins underwent a charge reduction from the favored solution charge state of -10 to a net charge of -6. This charge reduction is accompanied by a dramatic size reduction of about a factor of 2 (cross section of 2600 A2 (-10 charge state) down to 1430 A2 (-6 charge state)). We conclude that spermine increases the aggregation rate of alpha-syn by inducing a collapsed conformation, which then proceeds to form aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号