首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   20篇
化学   263篇
晶体学   4篇
力学   5篇
数学   25篇
物理学   71篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   9篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   18篇
  2015年   15篇
  2014年   15篇
  2013年   17篇
  2012年   25篇
  2011年   33篇
  2010年   16篇
  2009年   12篇
  2008年   20篇
  2007年   23篇
  2006年   13篇
  2005年   18篇
  2004年   14篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1973年   5篇
  1972年   1篇
  1966年   1篇
  1896年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
81.
The colloid stability of supramolecular assemblies composed of the synthetic cationic lipid dioctadecyldimethylammonium bromide (DODAB) on carboxymethyl cellulose (CMC) supported on polystyrene amidine (PSA) microspheres was evaluated via turbidimetry kinetics, dynamic light scattering for particle sizing, zeta-potential analysis, and determination of DODAB adsorption on CMC-covered particles. At 0.1 g L(-1) CMC and 2 x 10(11) PSA particles/mL, CMC did not induce significant particle flocculation, and a vast majority of CMC-covered single particles were present in the dispersion so that this was the condition chosen for determining DODAB concentration (C) effects on particle size and zeta potentials. At 0.35 mM DODAB, charge neutralization, maximal size, and visible precipitation indicated extensive flocculation and minimal colloid stability for the DODAB/CMC/PSA assembly. At 0.1 g L(-1) CMC, isotherms of high affinity for DODAB adsorption on CMC-covered particles presented a plateau at a limiting adsorption of 700 x 10(17) DODAB molecules adsorbed per square meter PSA which was well above bilayer deposition on a smooth particle surface. The polyelectrolyte layer on hydrophobic particles was swelled and fluffy (ca. 11-nm hydrodynamic thickness), and maximal adsorption of DODAB lipid onto this layer produced a compressed composite cationic film with 20 mV of zeta potential and about 10-nm mean thickness. The assembly of cationic lipid/CMC layer/polymeric particle was stable only well above charge neutralization of the polyelectrolyte by the cationic lipid, at relatively large lipid concentrations (at and above 1 mM DODAB) with charge neutralization leading to extensive particle aggregation.  相似文献   
82.
A method for determination of manganese and selenium in serum by simultaneous atomic absorption spectrometry (SIMAAS) is proposed. The samples (30 mul) were diluted (1+3) to 1.0% v/v HNO(3)+0.10% w/v Triton X-100 directly in the autosampler cups. A total of 20 mug Pd+10 mug Mg(NO(3))(2) was used as chemical modifier. The pyrolysis and atomization temperatures for the simultaneous heating program were 1200 and 2300 degrees C, respectively. The addition of an oxidant mixture (15% w/w H(2)O(2)+1.0% v/v HNO(3)) and the inclusion of a low temperature pyrolysis step (400 degrees C) attenuated the build-up of carbonaceous residues onto the integrated platform. An aliquot of 15 mul of the reference or sample solution was introduced into the graphite tube and heated at 80 degrees C; subsequently, 10 mul of oxidant mixture+10 mul of chemical modifier was introduced over that aliquot and the remaining heating program steps were executed. This strategy allowed at least 250 heating cycles for each THGA tube without analytical signal deterioration. The characteristic masses for manganese (6 pg) and selenium (46 pg) were estimated from the analytical curves. The detection limits were 6.5 pg (n=20, 3delta) for manganese and 50 pg (n=20, 3delta) for selenium. The reliability of the entire procedure was checked with the analysis of serum from Seronormtrade mark Trace Elements in Serum (Sero AS) and by addition and recovery tests (97+/-9% for manganese and 96+/-7% for selenium) using five serum samples.  相似文献   
83.
The ornidazole drug substance presents melt at approximately 90 °C (∆T = 85–98 °C), which is critical for its use on pharmaceutical manufacturing process. This work aimed the thermal characterization of ornidazole raw-material synthesized by three different manufacturers from India, China, and Italy, using the thermoanalytical techniques of DTA, DSC, and TG, besides the verification of its stability and compatibility as a solid pharmaceutical product by the analysis of its binary mixtures (BM) with excipients and a tablet formulation. The characterization includes the thermal decomposition kinetic investigation by Ozawa model using Arrhenius equation and drug purity determination by Van’t Hoff equation. The DSC purity determination and precision were compared with results from UV–Vis spectrophotometric and liquid chromatography, showing an adequate correlation before being recommended as a general method for purity assay. The drug raw-materials presented similar quality and zero-order kinetic behavior, besides showing differences on thermal stability. The drug presented compatibility with the tested excipients since the BM studied presented melting at the same temperature range as the drug and a decomposition temperature similar to the drug for two of the BM, and at a higher temperature for the others three of the BM evaluated, which presented excipients with higher molecular structure, capable of spatial coating on the small drug molecule promoting a physical interaction pharmaceutical acceptable. The tablet was processed by wet granulation and compressed under normal conditions of pressure and temperature, maintaining the physical properties of solid drug approving the manufacturing process used. In this study, the thermal analysis was used with success as an alternative method to characterize, quantify, and perform a preformulation study.  相似文献   
84.
A method using supercritical CO(2) to obtain biocompatible 2-oxazoline-based oligomers quaternized with different amines is described. The synthesized oligo(2-oxazoline)s display partial carbamic-acid insertion at one end. The syntheses of quaternary oligo(2-bisoxazoline)s and linear oligoethylenimine hydrochlorides are reported. Oligo(2-methyl-2-oxazoline) and oligo(2-bisoxazoline) quaternized with N,N-dimethyldodecylamine are the most efficient biocidal agents showing fast killing rates against Staphylococcus aureus and Escherichia coli. Linear oligoethylenimine hydrochloride shows the lowest MIC values but higher killing times against both bacteria. Based on the antimicrobial activity studies, a cooperative action of carbamic acid with the ammonium end group is proposed.  相似文献   
85.
The purpose of this study was to explore the possible link between metals and UV‐B‐induced damage in bacteria. The effect of growth in the presence of enhanced concentrations of different transition metals (Co, Cu, Fe, Mn and Zn) on the UV‐B sensitivity of a set of bacterial isolates was explored in terms of survival, activity and oxidative stress biomarkers (ROS generation, damage to DNA, lipid and proteins and activity of antioxidant enzymes). Metal amendment, particularly Fe, Cu and Mn, enhanced bacterial inactivation during irradiation by up to 35.8%. Amendment with Fe increased ROS generation during irradiation by 1.2–13.3%, DNA damage by 10.8–37.4% and lipid oxidative damage by 9.6–68.7%. Lipid damage during irradiation also increased after incubation with Cu and Co by up to 66.8% and 56.5% respectively. Mn amendment decreased protein carbonylation during irradiation by up to 44.2%. These results suggest a role of Fe, Co, Cu and Mn in UV‐B‐induced bacterial inactivation and the importance of metal homeostasis to limit the detrimental effects of ROS generated during irradiation.  相似文献   
86.
Polyaniline (PAn) films can be used in an electrochemical and optical combination system to amplify the optical signal for dissolved oxygen (DO) detection. To further improve the sensitivity of PAn film to DO, an oxygen‐sensitive molecule, Fe(III) meso‐tetera (4‐sulfonatophenyl) porphyrin (FeTSPP) is incorporated into PAn during the film generation. Results show that, after incorporating FeTSPP into the PAn matrix, both optical and potentiometric responses to DO are improved. The optimal optical signal is obtained under the application of ?2.5 μA to the modified electrode. Under this applied current, both optical and potentiometric signals show linear relations with the DO concentration within the range of 0.00–4.63 mg L?1, and the sensitivities for optical and potentiometric signals are 4.18 grayscale units mg?1 L and 13.39 mV mg?1 L, respectively.  相似文献   
87.
The molecular mobility of amorphous ibuprofen has been investigated by broadband dielectric relaxation spectroscopy (DRS) covering a temperature range of more than 200 K. Four different relaxation processes, labeled as alpha, beta, gamma, and D, were detected and characterized, and a complete relaxation map was given for the first time. The gamma-process has activation energy E a = 31 kJ.mol (-1), typical for local mobility. The weak beta-relaxation, observed in the glassy state as well as in the supercooled state was identified as the genuine Johari-Goldstein process. The temperature dependence of the relaxation time of the alpha-process (dynamic glass transition) does not obey a single VFTH law. Instead two VFTH regimes are observed separated by a crossover temperature, T B = 265 K. From the low temperature VFTH regime, a T g (diel) (tau =100 s) = 226 K was estimated, and a fragility or steepness index m = 93, was calculated showing that ibuprofen is a fragile glass former. The D-process has a Debye-like relaxation function but the temperature dependence of relaxation time also follows the VFTH behavior, with a Vogel temperature and a pre-exponential factor which seem to indicate that its dynamics is governed by the alpha-process. It has similar features as the Debye-type process observed in a variety of associating liquids, related to hydrogen bonding dynamics. The strong tendency of ibuprofen to form hydrogen bonded aggregates such as dimers and trimers either cyclic or linear which seems to control in particular the molecular mobility of ibuprofen was confirmed by IR spectroscopy, electrospray ionization mass spectrometry, and MD simulations.  相似文献   
88.
Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient for an effective treatment, and drug combination therapies can be implemented. In this work, in silico PK models were developed based on in vitro assays results, with the goal of predicting the in vivo performance of drug combinations in the context of cancer therapy. Combinations of reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were developed based on the previous in vitro studies and on the PK profile reported in the literature for human patients. Considering the quantification parameter area under the dose-response-time curve (AUCeffect) for the combinations effect, itraconazole was the most effective in combination with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose dependent and an increase in effect was predicted if itraconazole administration was continued (24-h dosing interval). This work demonstrates that in silico methods and AUCeffect are powerful tools to study relationships between tissue drug concentration and the percentage of cell growth inhibition over time.  相似文献   
89.
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.  相似文献   
90.
We report in this study the effect of the competition between cubic and uniaxial anisotropies on the magnetic properties of magnetic nanoparticles. We have employed Monte Carlo simulations in our calculations and we have seen that the observed behavior is very different for the cases where easy uniaxial axes are completely random oriented or parallel to an external magnetic field. We have also calculated the effective energy barrier distribution probed during the isothermal magnetic relaxation and a two peak structure is observed only for a random orientation of uniaxial axes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号