首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   45篇
  国内免费   11篇
化学   678篇
晶体学   11篇
力学   41篇
数学   89篇
物理学   465篇
  2022年   10篇
  2021年   16篇
  2020年   15篇
  2019年   15篇
  2018年   11篇
  2017年   9篇
  2016年   17篇
  2015年   21篇
  2014年   27篇
  2013年   61篇
  2012年   45篇
  2011年   61篇
  2010年   41篇
  2009年   33篇
  2008年   61篇
  2007年   63篇
  2006年   64篇
  2005年   46篇
  2004年   46篇
  2003年   35篇
  2002年   28篇
  2001年   29篇
  2000年   27篇
  1999年   11篇
  1997年   19篇
  1996年   11篇
  1995年   23篇
  1994年   29篇
  1993年   34篇
  1992年   18篇
  1991年   14篇
  1990年   19篇
  1989年   17篇
  1988年   14篇
  1987年   10篇
  1986年   11篇
  1985年   11篇
  1984年   19篇
  1983年   14篇
  1982年   20篇
  1981年   17篇
  1980年   12篇
  1979年   12篇
  1978年   22篇
  1977年   14篇
  1976年   25篇
  1975年   14篇
  1974年   19篇
  1973年   11篇
  1972年   10篇
排序方式: 共有1284条查询结果,搜索用时 187 毫秒
991.
Lorlatinib (PF‐06463922) is an ALK/ROS1 inhibitor and is in clinical trials for the treatment of ALK positive or ROS1 positive NSCLC (i.e. specific subsets of NSCLC). One of the laboratory objectives for this molecule indicated that it would be desirable to advance a molecule which was CNS penetrant in order to treat brain metastases. From this perspective, a macrocyclic template was attractive for a number of reasons. In particular, this template reduces the number of rotatable bonds, provides the potential to shield polar surface area and reinforces binding through a restricted conformation. All of these features led to better permeability for the molecules of interest and thus increased the chance for better blood brain barrier penetration. With a CNS penetrant molecule, kinase selectivity is a key consideration particularly with regard to proteins such as TrkB, which are believed to influence cognitive function. Removal of the chiral benzylic methyl substituent from lorlatinib was perceived as not only a means to simplify synthetic complexity, but also as a strategy to further truncate the molecule of interest. Examination of the NMR of the desmethyl analogues revealed that the compound existed as a mixture of atropisomers, which proved separable by chiral SFC. The individual atropisomers were evaluated through a series of in vitro assays, and shown to have a favorable selectivity profile when compared to lorlatinib. The challenge to develop such a molecule lies in the rate at which the atropisomers interchange dictated by the energy barrier required to do this. Here, we describe the synthesis of the desmethyl macrocycles, conformational studies on the atropisomers, and the kinetics of the interconversion. In addition, the corresponding conformational studies on lorlatinib are reported providing a hypothesis for why a single diastereomer is observed when the chiral benzylic methyl group is introduced.  相似文献   
992.
993.
Reversed-phase packing materials were prepared from HPLC silica and from zirconized HPLC silica support particles having sorbed poly(methyloctylsiloxane) (PMOS) as the stationary phase. Portions of zirconized material were subjected to 80 kGy of ionizing radiation. Columns prepared from these packing materials were subjected to 5000 column volumes each of neutral and alkaline (pH 10) mobile phases, with periodic tests to evaluate chromatographic performance. It was shown that the PMOS stationary phase sorbed onto zirconized silica requires an immobilization treatment (such as gamma irradiation) for long term stability while prior surface zirconization of the silica support surface greatly improves the chromatographic stability of the stationary phase when using alkaline mobile phases.  相似文献   
994.
Introduced approximately two decades ago, macrocyclic deprotonated tetraamido (4N) and, nearly a decade earlier, acyclic diamidodialkoxido or diamidophenolato (2N/2O) ligand systems have been used, among other things, for the synthesis of a wide variety of high-valent complexes of iron, manganese, cobalt, vanadium, nickel, chromium, and copper. Structural, magnetic, and catalytic properties of these mononuclear, dinuclear, and polynuclear complexes created by the Collins group are reviewed. The present account continues an overview of complexes of this type published recently and devoted to iron species exclusively [Chanda et al., J. Inorg. Biochem., 100 (2006) 606], which provide the first highly effective small molecule mimics of peroxidase enzymes, called TAML activators. The story of the reviewed first-row complexes does not include the diverse and instructive chemistry discovered for osmium, but like the osmium chemistry, it derives its greatest significance from the fact that key members of the various species mark the steps along the design pathway that led to iron-TAML activators. Consideration is given to recent questioning in the literature of the innocence of a TAML system that was designed to be innocent. The reasons underlying the now 15-year old refocusing of our research program on oxidation catalysis and green chemistry with the associated termination of research into designed molecule-based magnetic materials are explained. Our closing contributions from the mid-1990s to the design of molecule-based magnetic materials are reviewed. Previously reported data are discussed in conjunction with newly obtained information on the complexes using density functional theory.  相似文献   
995.
Recently, we reported the characterization of the S = (1)/ 2 complex [Fe (V)(O)B*] (-), where B* belongs to a family of tetraamido macrocyclic ligands (TAMLs) whose iron complexes activate peroxides for environmentally useful applications. The corresponding one-electron reduced species, [Fe (IV)(O)B*] (2-) ( 2), has now been prepared in >95% yield in aqueous solution at pH > 12 by oxidation of [Fe (III)(H 2O)B*] (-) ( 1), with tert-butyl hydroperoxide. At room temperature, the monomeric species 2 is in a reversible, pH-dependent equilibrium with dimeric species [B*Fe (IV)-O-Fe (IV)B*] (2-) ( 3), with a p K a near 10. In zero field, the M?ssbauer spectrum of 2 exhibits a quadrupole doublet with Delta E Q = 3.95(3) mm/s and delta = -0.19(2) mm/s, parameters consistent with a S = 1 Fe (IV) state. Studies in applied magnetic fields yielded the zero-field splitting parameter D = 24(3) cm (-1) together with the magnetic hyperfine tensor A/ g nbeta n = (-27, -27, +2) T. Fe K-edge EXAFS analysis of 2 shows a scatterer at 1.69 (2) A, a distance consistent with a Fe (IV)O bond. DFT calculations for [Fe (IV)(O)B*] (2-) reproduce the experimental data quite well. Further significant improvement was achieved by introducing hydrogen bonding of the axial oxygen with two solvent-water molecules. It is shown, using DFT, that the (57)Fe hyperfine parameters of complex 2 give evidence for strong electron donation from B* to iron.  相似文献   
996.
Nucleophilic aromatic substitution (SNAr) reactions are exploited to prepare poly(arylene sulfide)s (PAS's) via the reaction of bis-thiolates and dibrominated pyromellitic diimide (PMDI) derivatives. Small-molecule model studies reveal the reaction is well-defined and proceeds in quantitative yield in practical times at room temperature. Variation in comonomer feed ratios allowed some control over target polymer molecular weights in the step polymerization, but control was likely limited by the relatively poor polymer solubility in the dipolar aprotic solvents typically employed to promote SNAr reactions. One substitution pattern produces a steric “pocket” around the PMDI units, inducing a peculiar solubility trend in halogenated solvents; that is, greatly reduced solubility in CHCl3 relative to CH2Cl2 and C2H2Cl4. One example small-molecule readily dissolves in CHCl3 at room temperature, then rapidly grows poorly soluble crystals revealed by single-crystal XRD to contain CHCl3 molecules in the steric pockets. Finally, the recently demonstrated depolymerization of phthalonitrile-based PAS's via ipso substitution with monothiolates as chain scission agents yields quantitative molecular weight reduction to monomeric species from the polymers reported here.  相似文献   
997.
Malaria remains a significant cause of morbidity and mortality in Sub-Saharan Africa and South Asia. While clinical antimalarials are efficacious when administered according to local guidelines, resistance to every class of antimalarials is a persistent problem. There is a constant need for new antimalarial therapeutics that complement parasite control strategies to combat malaria, especially in the tropics. In this work, nopol-based quinoline derivatives were investigated for their inhibitory activity against Plasmodium falciparum, one of the parasites that cause malaria. The nopyl-quinolin-8-yl amides (2–4) were moderately active against the asexual blood stage of chloroquine-sensitive strain Pf3D7 but inactive against chloroquine-resistant strains PfK1 and PfNF54. The nopyl-quinolin-4-yl amides and nopyl-quinolin-4-yl-acetates analogs were generally less active on all three strains. Interesting, the presence of a chloro substituent at C7 of the quinoline ring of amide 8 resulted in sub-micromolar EC50 in the PfK1 strain. However, 8 was more than two orders of magnitude less active against Pf3D7 and PfNF54. Overall, the nopyl-quinolin-8-yl amides appear to share similar antimalarial profile (asexual blood-stage) with previously reported 8-aminoquinolines like primaquine. Future work will focus on investigating the moderately active and selective nopyl-quinolin-8-yl amides on the gametocyte or liver stages of Plasmodium falciparum and Plasmodium vivax.  相似文献   
998.
Sceletium tortuosum (L.) N.E.Br. (Mesembryanthemaceae), commonly known as kanna or kougoed, is an effective indigenous medicinal plant in South Africa, specifically to the native San and Khoikhoi tribes. Today, the plant has gained strong global attraction and reputation due to its capabilities to promote a sense of well-being by relieving stress with calming effects. Historically, the plant was used by native San hunter-gatherers and Khoi people to quench their thirst, fight fatigue and for healing, social, and spiritual purposes. Various studies have revealed that extracts of the plant have numerous biological properties and isolated alkaloids of Sceletium tortuosum are currently being used as dietary supplements for medicinal purposes and food. Furthermore, current research has focused on the commercialization of the plant because of its treatment in clinical anxiety and depression, psychological and psychiatric disorders, improving mood, promoting relaxation and happiness. In addition, several studies have focused on the isolation and characterization of various beneficial bioactive compounds including alkaloids from the Sceletium tortuosum plant. Sceletium was reviewed more than a decade ago and new evidence has been published since 2008, substantiating an update on this South African botanical asset. Thus, this review provides an extensive overview of the biological and pharmaceutical properties of Sceletium tortuosum as well as the bioactive compounds with an emphasis on antimicrobial, anti-inflammatory, anti-oxidant, antidepressant, anxiolytic, and other significant biological effects. There is a need to critically evaluate the bioactivities and responsible bioactive compounds, which might assist in reinforcing and confirming the significant role of kanna in the promotion of healthy well-being in these stressful times.  相似文献   
999.
2,3,4,5,6-Pentafluorobenzyl and 3,5-bistrifluoromethylbenzyl ester auxiliaries can enable difficult macrocyclizations to afford rigid all-carbon paracyclophanes. The effectiveness of these auxiliaries has been demonstrated in preparing the carbon skeleton of the macrocyclic natural product longithorone C.  相似文献   
1000.
An endcapped stationary phase is prepared by thermal immobilization of poly(methyltetradecylsiloxane) (PMTDS) onto a doubly zirconized silica support followed by endcapping using a mixture of hexamethyldisilazane and trimethylchlorosilane. The preparation of the Si-Zr(PMTDS)ec phase shows good repeatability with RSD <3.0% for carbon loadings and column efficiency. This new stationary phase has a lower density of residual hydroxyl groups, according to spectroscopic methods while basic compounds from the Tanaka and Engelhardt test mixtures are eluted with essentially symmetric peaks. Furthermore, the stability of the Si-Zr(PMTDS)ec stationary phase, measured using an accelerated aging test, is twice as great as the stability of a similar nonendcapped phase. The new phase shows promise for the separation of basic pharmaceuticals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号