首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   0篇
化学   12篇
晶体学   1篇
力学   4篇
数学   34篇
物理学   96篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   16篇
  1989年   18篇
  1988年   3篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1936年   2篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
141.
142.
143.
We treat the eigenvalue problem Ax = λBx, where A and B are odd potential operators, A is strictly monotone, bounded, coercive, and continuously invertible, and B is monotone and compact. A naturally defined iteration operator is employed, together with the Lyusternik-Schnirelman theory, to prove the existence of infinitely many nontrivial eigenfunctions. With the possible exception of the multiplicity assertion the results which we obtain are not new. The method which we use, however, has not been applied before to problems of this type. It exploits both the potential character and the monotonicity of the operators and makes the treatment of the infinite dimensional problem essentially as simple as that of its finite dimensional analog. This simplification results primarily from the compactness properties of the iteration operator.  相似文献   
144.
145.
146.
We study the collective dynamics of noise-driven excitable elements, so-called active rotators. Crucially here, the natural frequencies and the individual coupling strengths are drawn from some joint probability distribution. Combining a mean-field treatment with a Gaussian approximation allows us to find examples where the infinite-dimensional system is reduced to a few ordinary differential equations. Our focus lies in the cooperative behavior in a population consisting of two parts, where one is composed of excitable elements, while the other one contains only self-oscillatory units. Surprisingly, excitable behavior in the whole system sets in only if the excitable elements have a smaller coupling strength than the self-oscillating units. In this way positive local correlations between natural frequencies and couplings shape the global behavior of mixed populations of excitable and oscillatory elements.  相似文献   
147.
ABSTRACT: BACKGROUND: We previously found that transcranial Direct Current Stimulation (tDCS) improves learning and performance in a task where subjects learn to detect potential threats indicated by small target objects hidden in a complex virtual environment. In the present study, we examined the hypothesis that these effects on learning and performance are related to changes in attention. The effects of tDCS were tested for three forms of attention (alerting, orienting, and executive attention) using the Attention Network Task (ANT), which were compared with performance on the object-learning task. RESULTS: Participants received either 0.1 mA (N = 10) or 2.0 mA (N = 9) tDCS during training and were tested for performance in object-identification before training (baseline-test) and again immediately after training (immediate test). Participants next performed the Attention Networks Task (ANT), and were later tested for object-identification performance a final time (delayed test). Alerting, but not orienting or executive attention, was significantly higher for participants receiving 2.0 mA compared with 0.1 mA tDCS (p < 0.02). Furthermore, alerting scores were significantly correlated with the proportion of hits (p < 0.01) for participants receiving 2.0 mA. CONCLUSIONS: These results indicate that tDCS enhancement of performance in this task may be related in part to the enhancement of alerting attention, which may benefit the initial identification, learning and/or subsequent recognition of target objects indicating potential threats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号