首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
化学   32篇
数学   3篇
物理学   30篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1988年   4篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有65条查询结果,搜索用时 515 毫秒
11.
A low temperature scanning force microscope (SFM) operating in a dynamic mode in ultrahigh vacuum was used to study the Si(111)- (7x7) surface at 7.2 K. Not only the twelve adatoms but also the six rest atoms of the unit cell are clearly resolved for the first time with SFM. In addition, the first measurements of the short range chemical bonding forces above specific atomic sites are presented. The data are in good agreement with first principles computations and indicate that the nearest atoms in the tip and sample relax significantly when the tip is within a few A of the surface.  相似文献   
12.
Scandium trifluoride maintains a cubic ReO(3) type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at ~300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, α(l) ≈ -14 ppm K(-1)). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW(2)O(8) and positive thermal expansion above ~1100 K. While the cubic ReO(3) structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF(3) is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.  相似文献   
13.
14.
Very high energy X-rays (ca. >40 keV) have long offered great promise in providing great insight into the inner workings of catalysts; insights that may complement the battery of techniques available to researchers in catalysis either in the laboratory or at more conventional X-ray wavelengths. This contribution aims to critically assess the diverse possibilities now available in the high energy domain as a result of the maturation of third generation synchrotron facilities and to look forward to the potential that forthcoming developments in synchrotron source technology may offer the world of catalysis in the near future.  相似文献   
15.
Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted via multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis.

Multimodal in situ experimental data probing a complex reaction have been integrated via a multi-level analysis involving non-negative matrix factorization and correlation analysis. This strategy can be applied generally to multimodal experiments.  相似文献   
16.
When materials are reduced to the nanoscale, their structure and reactivity can deviate greatly from the bulk or extended surface case. Using the archetypal example of supported Pt nanoparticles (ca. 2 nm diameter, 1 wt % Pt on Al(2)O(3)) catalyzing CO oxidation to CO(2) during cyclic redox operation, we show that high energy X-ray total scattering, used with subsecond time resolution, can yield detailed, valuable insights into the dynamic behavior of nanoscale systems. This approach reveals how these nanoparticles respond to their environment and the nature of active sites being formed and consumed within the catalytic process. Specific insight is gained into the structure of the highly active Pt surface oxide that formed on the nanoparticles during catalysis.  相似文献   
17.
An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号