首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   21篇
  国内免费   7篇
化学   161篇
晶体学   5篇
力学   11篇
数学   22篇
物理学   60篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   17篇
  2013年   20篇
  2012年   16篇
  2011年   18篇
  2010年   10篇
  2009年   7篇
  2008年   15篇
  2007年   6篇
  2006年   21篇
  2005年   11篇
  2004年   8篇
  2003年   10篇
  2002年   6篇
  2001年   8篇
  2000年   12篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1977年   2篇
  1976年   1篇
  1966年   1篇
排序方式: 共有259条查询结果,搜索用时 875 毫秒
41.
GaInP/AlGaInP triple quantum well (TQW) lasers, grown by metalorganic chemical vapor deposition (MOCVD) using tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP), were fabricated with a pulsed anodic oxidation (PAO) process. The devices worked at room temperature (RT) with the lowest threshold current density (Jth) of 1.5 kA/cm2 ever reported for GaInP/AlGaInP lasers grown using TBAs and TBP. Temperature dependent (35–250 K) electroluminescence (EL) study of the GaInP/AlGaInP laser diode showed almost the same luminescence quenching behavior at a high temperature region (120–250 K), independent of the injection current (100–150 mA). A model involving a nonradiative recombination mechanism was presented to interpret the EL quenching behavior over the experimental temperature range. The nonradiative recombination centers in the Al-containing barrier or cladding layer are believed to contribute to the loss of carriers via nonradiative recombination. PACS 78.60.Fi; 71.20.Nr; 78.67.De; 81.15.Gh; 42.55.Px  相似文献   
42.
Transition metal catalysed C−H bond activation chemistry has emerged as an exciting and promising approach in organic synthesis. This allows us to synthesize a wider range of functional molecules and conjugated polymers in a more convenient and more atom economical way. The formation of C−C bonds in the construction of pi-conjugated systems, particularly for conjugated polymers, has benefited much from the advances in C−H bond activation chemistry. Compared to conventional transition-metal catalysed cross-coupling polymerization such as Suzuki and Stille cross-coupling, pre-functionalization of aromatic monomers, such as halogenation, borylation and stannylation, is no longer required for direct arylation polymerization (DArP), which involve C−H/C−X cross-coupling, and oxidative direct arylation polymerization (Ox-DArP), which involves C−H/C−H cross-coupling protocols driven by the activation of monomers’ C(sp2)−H bonds. Furthermore, poly(annulation) via C−H bond activation chemistry leads to the formation of unique pi-conjugated moieties as part of the polymeric backbone. This review thus summarises advances to date in the synthesis of conjugated polymers utilizing transition metal catalysed C−H bond activation chemistry. A variety of conjugated polymers via DArP including poly(thiophene), thieno[3,4-c]pyrrole-4,6-dione)-containing, fluorenyl-containing, benzothiadiazole-containing and diketopyrrolopyrrole-containing copolymers, were summarized. Conjugated polymers obtained through Ox-DArP were outlined and compared. Furthermore, poly(annulation) using transition metal catalysed C−H bond activation chemistry was also reviewed. In the last part of this review, difficulties and perspective to make use of transition metal catalysed C−H activation polymerization to prepare conjugated polymers were discussed and commented.  相似文献   
43.
Zinc oxide (ZnO) quantum dots (QDs) were fabricated on silicon substrates by metal organic chemical vapor deposition. Formation of QDs is due to the vigorous reaction of the precursors when a large amount of precursors was introduced during the growth. The size of the QDs ranged from 3 to 12 nm, which was estimated by high-resolution transmission electron microscopy. The photoluminescence measured at 80 K showed that the emission of QDs embedded film ranged from 3.0 to 3.6 eV. The broad near-band-edge emission was due to the quantum confinement effect of the QDs.  相似文献   
44.
An unprecedented synthesis of a range of high value homo- and heterobiindolyls is presented. The one-pot Miyaura borylation and subsequent Suzuki-Miyaura coupling sequence allows for the construction of the highly sterically congested C-C bond between two bromoindoles in modest to good overall yields.  相似文献   
45.
The NO catalytic direct decomposition was studied over La2CuO4 nanofibers, which were synthesized by using single walled carbon nanotubes (CNTs) as templates under hydrothermal condition. The composition and BET specific surface area of the La2CuO4 nanofiber were La2Cu0.882+Cu0.12+O3.94 and 105.0 m2/g, respectively. 100% NO conversion (turnover frequency-(TOF): 0.17 gNO/gcatalyst s) was obtained over such nanofiber catalyst at temperatures above 300 °C with the products being only N2 and O2. In 60 h on stream testing, either at 300 °C or at 800 °C, the nanofiber catalyst still showed high NO conversion efficiency (at 300 °C, 98%, TOF: 0.17 gNO/gcatalyst s; at 800 °C, 96%, TOF: 0.16 gNO/gcatalyst s). The O2 and NO temperature programmed desorption (TPD) results indicated that the desorption of oxygen over the nanofibers occurred at 80-190 and 720-900 °C; while NO desorption happened at temperatures of 210-330 °C. NO and O2 did not competitively adsorb on the nanofiber catalyst. For outstanding the advantage of the nanostate catalyst, the usual La2CuO4 bulk powder was also prepared and studied for comparison.  相似文献   
46.
47.
Given any open convex cone K, a logarithmically homogeneous, self-concordant barrier for K, and any positive real number r < 1, we associate, with each direction , a second-order cone containing K. We show that K is the interior of the intersection of the second-order cones , as x ranges over all directions in K. Using these second-order cones as approximations to cones of symmetric, positive definite matrices, we develop a new polynomial-time primal-dual interior-point algorithm for semidefinite programming. The algorithm is extended to symmetric cone programming via the relation between symmetric cones and Euclidean Jordan algebras.  相似文献   
48.
Förster–Dexter theory for resonant energy transfer is extended to higher order and applied to explain the rates of energy transfer and migration processes in highly forbidden transitions for some solid-state lanthanide (Ln) ion systems for which experimental results are available. The second-order two-body energy transfer mechanism involves two inter-ion correlated dipole electrostatic interactions, i.e. dipole dipole–dipole dipole (dd–dd) energy transfer, also termed Axe–Axe energy transfer in view of the similarity of the theoretical formalism with that for two-photon transitions. Each of the dipolar transitions consists of a transition from the 4fn configuration to an opposite-parity configuration, taken to be 4fn−15d. dd–dd energy transfer is a short-range (R−12) interaction so that it is most important in systems with short donor Ln–acceptor Ln separations. The energy transfer formalism is extended to include spin-forbidden transitions at one or two sites, the so-called Axe–Judd–Pooler (Axe–JP) and JP–JP energy transfer. In some cases the dd–dd mechanism is the dominant energy transfer process, as exemplified herein for energy migration in the 5D0 state of Sm2+ in SrF2, and also in the 5D0 state of Eu3+ in Cs2NaEuCl6.  相似文献   
49.
Plastics have become an integral part of our contemporary life because of many desirable properties including durability and resistance to degradation. However, these non-degradable, petrochemicals-derived plastics accumulate in the environment at a rate of 25 million tons per year. Recently there is an interest in the development of a class of microbially produced bioplastics, e.g., polyhydroxyalkanoates (PHAs) which retain the desired physical and chemical properties of conventional synthetic plastics. Broader usage of biodegradable plastics in packaging and disposable products as a solution to the environmental problem would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. In this paper, the microbial production of PHAs by activated sludge utilizing food industrial wastes is reported. The melting points of the products as well as the co-polymer composition of the products investigated by GC and NMR were compared. By use of activated sludge to convert the carbon source into PHAs not only environment-friendly bioplastics are produce, but also part of the problem of the disposal of municipal activated sludge is solved. The selection of food industrial waste as carbon resource can also further reduce the cost of production of PHAs.  相似文献   
50.
Biologically-produced polymers, from microbial fermentation are naturally biodegradable and are potential environment-friendly substitutes for some synthetic plastics. However, broader applications are restricted by the high production costs and limitations in physical and mechanical properties. In this study, activated sludge bacteria in a conventional wastewater treatment system treating a wastewater that contained organic pollutants, were induced by nitrogen deficiency to accumulate intracellular storage polymers, which can be extracted as a low-cost source of biodegradable plastics. Chromatographic analysis of the extracted polymers revealed a composition of poly-hydroxyalkanoate and a number of related co-polymers. Alcaligene spp. in the activated sludge microbial consortium was identified as the main genus accumulated these polymers. When the C:N ratio was increased from 20 to 140, the specific polymer yield increased to a maximum of 0.39 g polymer/g dry cell while specific growth yield decreased to 0.26 g dry cell/g carbonaceous matter consumed. The highest overall polymer production yield of 0.11 g polymer/g carbonaceous matter consumed was achieved when the C:N ratio was maintained at a nitrogen-deficient level of 100. The specific polymer yield in the isolated Alcaligene spp. cells were as high as 0.7 g polymer/g dry cell mass. The composition of the co-polymers, and hence the physical and mechanical properties, could be controlled by manipulating the influent organic compositions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号