首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4191篇
  免费   215篇
  国内免费   21篇
化学   3201篇
晶体学   16篇
力学   80篇
数学   536篇
物理学   594篇
  2023年   52篇
  2022年   73篇
  2021年   84篇
  2020年   135篇
  2019年   109篇
  2018年   63篇
  2017年   79篇
  2016年   174篇
  2015年   150篇
  2014年   175篇
  2013年   198篇
  2012年   305篇
  2011年   257篇
  2010年   149篇
  2009年   141篇
  2008年   229篇
  2007年   217篇
  2006年   190篇
  2005年   199篇
  2004年   183篇
  2003年   122篇
  2002年   154篇
  2001年   66篇
  2000年   60篇
  1999年   51篇
  1998年   58篇
  1997年   50篇
  1996年   54篇
  1995年   38篇
  1994年   32篇
  1993年   31篇
  1992年   42篇
  1991年   24篇
  1990年   27篇
  1989年   33篇
  1988年   33篇
  1987年   30篇
  1986年   23篇
  1985年   27篇
  1984年   31篇
  1983年   26篇
  1982年   21篇
  1981年   38篇
  1980年   24篇
  1979年   21篇
  1978年   17篇
  1977年   27篇
  1976年   10篇
  1975年   12篇
  1970年   13篇
排序方式: 共有4427条查询结果,搜索用时 15 毫秒
11.
Gibson C  Rebek J 《Organic letters》2002,4(11):1887-1890
[structure: see text] A cavitand outfitted with a chelated palladium atom catalyzes allylic alkylation reactions. Molecular recognition by the cavitand distinguishes between closely related structures and results in subtle substrate specificities.  相似文献   
12.
13.
Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2′-yl)-o-carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive ‘mixed’ state of 1-(pyren-2′-yl)-o-carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.

Reversible conversion between excited-states is key to many photophysical phenomena. We studied the equilibrium between LE and CT states by time-resolved and temperature-dependent fluorescence, fs- and ns-transient absorption, and LR-TDDFT calculations.  相似文献   
14.
In this article, we present fluorescent guanidiniocarbonyl-indoles as versatile oxo-anion binders. Herein, the guanidiniocarbonyl-indole (GCI) and methoxy-guanidiniocarbonyl-indole (MGCI) were investigated as ethylamides and compared with the well-known guanidiniocarbonyl-pyrrole (GCP) concerning their photophysical properties as well as their binding behavior towards oxo-anions. Hence, a variety of anionic species, such as carboxylates, phosphonates and sulfonates, have been studied regarding their binding properties with GCP, GCI and MGCI using UV-Vis titrations, in combination with the determination of the complex stoichiometry using the Job method. The emission properties were studied in relation to the pH value using fluorescence spectroscopy as well as the determination of the photoluminescence quantum yields (PLQY). Density functional theory (DFT) calculations were undertaken to obtain a better understanding of the ground-lying electronic properties of the investigated oxo-anion binders. Additionally, X-ray diffraction of GCP and GCI was conducted. We found that GCI and MGCI efficiently bind carboxylates, phosphonates and sulfonates in buffered aqueous solution and in a similar range as GCP (Kass ≈ 1000–18,000 M−1, in bis-tris buffer, pH = 6); thus, they could be regarded as promising emissive oxo-anion binders. They also exhibit a visible fluorescence with a sufficient PLQY. Additionally, the excitation and emission wavelength of MGCI was successfully shifted closer to the visible region of the electromagnetic spectrum by introducing a methoxy-group into the core structure, which makes them interesting for biological applications.  相似文献   
15.
16.
Multivalent interactions can be applied universally for a targeted strengthening of an interaction between different interfaces or molecules. The binding partners form cooperative, multiple receptor–ligand interactions that are based on individually weak, noncovalent bonds and are thus generally reversible. Hence, multi‐ and polyvalent interactions play a decisive role in biological systems for recognition, adhesion, and signal processes. The scientific and practical realization of this principle will be demonstrated by the development of simple artificial and theoretical models, from natural systems to functional, application‐oriented systems. In a systematic review of scaffold architectures, the underlying effects and control options will be demonstrated, and suggestions will be given for designing effective multivalent binding systems, as well as for polyvalent therapeutics.  相似文献   
17.
18.
Superfluid-insulator transition in a periodically driven optical lattice   总被引:1,自引:0,他引:1  
We demonstrate that the transition from a superfluid to a Mott insulator in the Bose-Hubbard model can be induced by an oscillating force through an effective renormalization of the tunneling matrix element. The mechanism involves adiabatic following of Floquet states, and can be tested experimentally with Bose-Einstein condensates in periodically driven optical lattices. Its extension from small to very large systems yields nontrivial information on the condensate dynamics.  相似文献   
19.
The exciton-exciton interaction is investigated for spatially indirect excitons in coupled quantum wells. The Hartree-Fock and Heitler-London approaches are improved by a full two-exciton calculation including the van der Waals effect. Using these potentials for the singlet and triplet channel, the two-body scattering matrix is calculated and employed to derive a modified relation between exciton density and blue shift. Such a relation is of central importance for gauging exciton densities on the way toward Bose condensation.  相似文献   
20.
While large‐scale synchrotron sources provide a highly brilliant monochromatic X‐ray beam, these X‐ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X‐ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory‐scale X‐ray sources: they provide a performance and brilliance that lie in between those of large‐scale synchrotron sources and X‐ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X‐rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X‐ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号