首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4533篇
  免费   184篇
  国内免费   21篇
化学   3312篇
晶体学   27篇
力学   85篇
数学   586篇
物理学   728篇
  2024年   15篇
  2023年   59篇
  2022年   83篇
  2021年   122篇
  2020年   172篇
  2019年   175篇
  2018年   71篇
  2017年   82篇
  2016年   203篇
  2015年   154篇
  2014年   176篇
  2013年   201篇
  2012年   306篇
  2011年   263篇
  2010年   151篇
  2009年   143篇
  2008年   230篇
  2007年   221篇
  2006年   190篇
  2005年   196篇
  2004年   184篇
  2003年   125篇
  2002年   156篇
  2001年   68篇
  2000年   69篇
  1999年   53篇
  1998年   68篇
  1997年   57篇
  1996年   67篇
  1995年   41篇
  1994年   38篇
  1993年   32篇
  1992年   43篇
  1991年   24篇
  1990年   29篇
  1989年   33篇
  1988年   34篇
  1987年   32篇
  1986年   23篇
  1985年   28篇
  1984年   31篇
  1983年   27篇
  1982年   22篇
  1981年   39篇
  1980年   24篇
  1979年   21篇
  1978年   20篇
  1977年   29篇
  1975年   12篇
  1970年   13篇
排序方式: 共有4738条查询结果,搜索用时 15 毫秒
971.
Cars, television, mobile phones, digital cameras, cash machines: Daily life is strongly affected by microchips produced from high purity silicon single crystals via thin wafers. Most of these single crystals are prepared by a process invented by the German‐Polish scientist Jan Czochralski in 1916 in the “Kabelwerk Oberspree (KWO)” of the “Allgemeine Elektricitätsgesellschaft (AEG)” in Berlin‐Oberschöneweide. Czochralski discovered the famous method to pull single crystals by accident: Deep in thought, he dipped his pen not into an ink pot but into a crucible with liquid tin, both standing next to one another on his desk. Quickly he pulled his pen out and observed a thin thread of tin emerging from the tip. After etching, the thread was identified as a single crystal of tin. This observation is probably one of the most important technical inventions of the first half of the 20th century. In 1917, he left the AEG in Berlin and worked in the metal research laboratory, later belonging to the “Metallgesellschaft”, in Frankfurt/Main. Until today, wafers of high‐purity silicon are prepared by the Czochralski method. Silicon wafers with 200 mm diameter were produced in 1990, 300 mm wafers in 2001. The production of wafers with 450 mm diameter was expected for 2016. Siltronic produced in 2009 the first dislocation‐free silicon single crystal with 450 mm diameter, and other companies followed. However, until now, the 450 mm technology is not standard. This is due to a combination of very high investment costs needed to establish the 450 mm technology and very low prices of microchips.  相似文献   
972.
973.
1,3‐Dipentafluorophenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine ( 1 ) was synthesized by the reaction of [(C6F5)NPCl3]2 with trimethylsilyl azide in CH2Cl2 and characterized by multinuclear NMR and vibrational spectroscopy. The molecular structure of the compound was determined by single‐crystal X‐ray structure analysis. [(C6F5)NP(N3)3]2 crystallizes in the monoclinic space group P21/n with a = 9.6414(2), b = 7.4170(1) and c = 15.9447(4) Å, β = 94.4374(9)°, with 2 formula units per unit cell. The bond situation in [(C6F5)NP(N3)3]2 has been studied on the basis of NBO analysis. The antisymmetric stretching vibration of the azide groups is discussed. The structural diversity of 1 and 1,3‐diphenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine in solution and in the solid state depending on the aryl substituent at the nitrogen atom is discussed.  相似文献   
974.
Intramolecularly‐stabilized germanium, tin, and lead alkoxides of the type M(OCH2CH2NR2)2 [R = Et, M = Ge ( 1 ); R = Me, M = Sn ( 2 ); R = Me, M = Pb ( 3 )] are suitable precursors for the synthesis of group 14 chalcogenides ME (M = Ge, Sn, Pb; E = S, Se, Te) in scrambling reactions with (Me3Si)2S and (Et3Si)2E (E = Se, Te) at moderate temperatures via hot injection method. The reactions proceed with elimination of the corresponding silylether as was proven by in situ 1H NMR spectroscopy. The solid‐state structures of the homoleptic complex 1 and the heteroleptic complex ClGe(OC2H4NEt2) ( 4 ) were determined by single‐crystal X‐ray diffraction, whereas the group 14 chalcogenides were characterized by XRD, SEM, and EDX.  相似文献   
975.
976.
977.
The reaction of [{(C5Me5)CrCl2}2] with [2.2](1,4)cyclophane gave [(C5Me5)Cr{[2.2](1,4)cyclophane}] (1) and [(C5Me5)Cr{[2.2](1,4)cyclophane}Cr(C5Me5)] (2), depending on the reaction conditions. X-ray structure analysis showed 2 to be a ministack which in turn is stacked in the lattice. The chromium atoms are 6.035 A apart, and the distortion of the benzene rings to boat-shaped moieties is less pronounced than in parent [2.2](1,4)cyclophane. The NMR and EPR spectra were consistent with a S=1/2 ground state for 1 and with two interacting S=1/2 centers in 2. Spin density was found in the ligand pi systems, where its sign was negative when the pi system was adjacent to chromium, while on the nonbonded benzene moiety of 1 it was positive. Cyclic voltammograms showed reductions to 1- and 2(2-), as well as oxidations to 1+, 2+, and 2(2+) which were quasireversible, whereas oxidations to 1(2+) and 2(3+) were irreversible. Interaction between the metal ions was revealed by a 260 mV separation of the redox waves belonging to 2+, and 2(2+). Both cations were isolated as [B(C6H5)4]- salts, which in solution decomposed to [2.2](1,4)cyclophane and [(C5Me5)Cr{(eta6-C6H5)B(C6H5)3}] (3). The 1H and 13C NMR spectra of 3 were in accordance with an S=1 ground state. Solid-state magnetic measurements of the dimetallic compounds showed antiferromagnetic interaction with J=-122 cm-1 for 2, J=-31 cm-1 for 2+ (ground state S=1/2), and J=-23.5 cm-1 for 2(2+) (with H=-JS1S2). The decrease of J in the series 2, 2+, and 2(2+) was traced to the number of unpaired electrons and, for the mixed-valent cation 2+, to additional double exchange.  相似文献   
978.
Long‐term stable holographic volume gratings in azobenzene‐containing films have potential applications as forgery‐proof security features or in holographic data storage. However, azobenzene‐based polymer systems often lack sufficiently high writing speeds. Here, an approach to improve the holographic writing performance of photo‐orientable azobenzene‐containing polymers by blending with azobenzene molecular glasses is presented. The molecular glass enhances the photo‐plastification effect and, consequently, the writing speed. This concept of improving the holographic performance of photo‐orientable azobenzene polymers with azobenzene molecular glasses is demonstrated with a homopolymer and two block copolymers. In the azobenzene homopolymer, an addition of 10 wt % of the molecular glass leads to a doubling of the writing speed. Simultaneously, the long‐term stability of inscribed gratings is maintained. In case of the block copolymers, the molecular glass is present in the polystyrene matrix and accumulates in the azobenzene minority phase. Adding 5–10 wt % of molecular glass improves the writing speed of the azobenzene block copolymer by a factor of 3–4. An addition of 15 wt % of molecular glass to the block copolymer containing azobenzene and nonphotoactive mesogenic side groups reduces the writing time by a factor of 15 and the long‐term stability of the gratings is retained. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2110–2117  相似文献   
979.
Differential scanning calorimetry and fast scanning chip calorimetry heating experiments were carried out in a wide range of rates of temperature change from 0.2 to 60,000 K s?1 for isothermally crystallized polyamide 6. Multiple melting peaks were observed. With increasing heating rate, the highest‐temperature endotherm shifts toward lower temperatures and finally disappears due to suppression of the reorganization. The critical heating rate to suppress reorganization was 15–50 times higher than the critical cooling rate to cause complete vitrification. On heating at rates higher than the critical heating rate to suppress reorganization, there were observed two melting processes of different kinetics. Four possible assignments were considered regarding the two crystal populations. These are (i) crystals grown during primary and secondary crystallization, (ii) crystals grown in the bulk and nucleated at the surface/substrate, (iii) crystals, which are subjected to different local stress originating from heterogeneities in interlamellar regions, and (iv) the crystal/mesophase polymorphism. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2126–2138  相似文献   
980.
In this work, we combined a newly developed matrix coating technique – matrix coating assisted by an electric field (MCAEF) and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to enhance the imaging of peptides and proteins in tissue specimens of human prostate cancer. MCAEF increased the signal‐to‐noise ratios of the detected proteins by a factor of 2 to 5, and 232 signals were detected within the m/z 3500–37500 mass range on a time‐of‐flight mass spectrometer and with the sinapinic acid MALDI matrix. Among these species, three proteins (S100‐A9, S100‐A10, and S100‐A12) were only observed in the cancerous cell region and 14 proteins, including a fragment of mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase kinase 2, a fragment of cAMP‐regulated phosphoprotein 19, 3 apolipoproteins (C‐I, A‐I, and A‐II), 2 S100 proteins (A6 and A8), β‐microseminoprotein, tumor protein D52, α‐1‐acid glycoprotein 1, heat shock protein β‐1, prostate‐specific antigen, and 2 unidentified large peptides at m/z 5002.2 and 6704.2, showed significantly differential distributions at the p < 0.05 (t‐test) level between the cancerous and the noncancerous regions of the tissue. Among these 17 species, the distributions of apolipoprotein C‐I, S100‐A6, and S100‐A8 were verified by immunohistological staining. In summary, this study resulted in the imaging of the largest group of proteins in prostate cancer tissues by MALDI‐MS reported thus far, and is the first to show a correlation between S100 proteins and prostate cancer in a MS imaging study. The successful imaging of the three proteins only found in the cancerous tissues, as well as those showing differential expressions demonstrated the potential of MCAEF‐MALDI/MS for the in situ detection of potential cancer biomarkers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号