首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
  国内免费   3篇
化学   14篇
力学   4篇
数学   80篇
物理学   6篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
101.
A global optimization algorithm is proposed for finding the global minimum potential energy conformations of small molecules. The minimization of the total potential energy is formulated on an independent set of internal coordinates involving only torsion (dihedral) angles. Analytical expressions for the Euclidean distances between non-bonded atoms, which are required for evaluating the individual pairwise potential terms, are obtained as functions of bond lengths, covalent bond angles, and torsion angles. A novel procedure for deriving convex lower bounding functions for the total potential energy function is also introduced. These underestimating functions satisfy a number of important theoretical properties. A global optimization algorithm is then proposed based on an efficient partitioning strategy which is guaranteed to attain -convergence to the global minimum potential energy configuration of a molecule through the solution of a series of nonlinear convex optimization problems. Moreover, lower and upper bounds on the total finite number of required iterations are also provided. Finally, this global optimization approach is illustrated with a number of example problems.  相似文献   
102.
The accurate solution of optimal control problems is crucial in many areas of engineering and applied science. For systems which are described by a nonlinear set of differential-algebraic equations, these problems have been shown to often contain multiple local minima. Methods exist which attempt to determine the global solution of these formulations. These algorithms are stochastic in nature and can still get trapped in local minima. There is currently no deterministic method which can solve, to global optimality, the nonlinear optimal control problem. In this paper a deterministic global optimization approach based on a branch and bound framework is introduced to address the nonlinear optimal control problem to global optimality. Only mild conditions on the differentiability of the dynamic system are required. The implementa-tion of the approach is discussed and computational studies are presented for four control problems which exhibit multiple local minima.  相似文献   
103.
We present a new class of convex underestimators for arbitrarily nonconvex and twice continuously differentiable functions. The underestimators are derived by augmenting the original nonconvex function by a nonlinear relaxation function. The relaxation function is a separable convex function, that involves the sum of univariate parametric exponential functions. An efficient procedure that finds the appropriate values for those parameters is developed. This procedure uses interval arithmetic extensively in order to verify whether the new underestimator is convex. For arbitrarily nonconvex functions it is shown that these convex underestimators are tighter than those generated by the BB method. Computational studies complemented with geometrical interpretations demonstrate the potential benefits of the proposed improved convex underestimators.  相似文献   
104.
Direct scattering problems for partially coated piecewise homogenous and inhomogeneous layered obstacles in linear elasticity lead to mixed impedance transmission problems for the steady‐state elastic oscillation equations. For a piecewise homogenous isotropic composite body, we employ the potential method and reduce the mixed impedance transmission problem to an equivalent system of boundary pseudodifferential equations. We give a detailed analysis of the corresponding pseudodifferential operators, which live on the interface between the layers and on a proper submanifold of the boundary of the composite elastic body, and establish uniqueness and existence results for the original mixed impedance transmission problem for arbitrary values of the oscillation frequency parameter; this is crucial in the study of inverse elastic scattering problems for partially coated layered obstacles. We also investigate regularity properties of solutions near the collision curves, where the different boundary conditions collide, and establish almost best Hölder smoothness results. Further, we analyze the asymptotic behavior of the stress vector near the collision curve and derive explicit formulas for the stress singularity exponents. The case of Lipschitz surfaces is briefly treated separately. In the case of a composite body containing homogeneous or inhomogeneous finite anisotropic inclusions, we develop an alternative hybrid method based on the so‐called nonlocal approach and reduce the mixed transmission problem to an equivalent functional‐variational equation with a sesquilinear form that ‘lives’ on a bounded part of the layered composite body and its boundary. We show that this sesquilinear form is coercive and that the corresponding variational equation is uniquely solvable. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号