首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4743篇
  免费   200篇
  国内免费   11篇
化学   3647篇
晶体学   52篇
力学   47篇
数学   410篇
物理学   798篇
  2023年   34篇
  2022年   54篇
  2021年   51篇
  2020年   71篇
  2019年   57篇
  2018年   36篇
  2017年   31篇
  2016年   133篇
  2015年   157篇
  2014年   130篇
  2013年   226篇
  2012年   289篇
  2011年   325篇
  2010年   200篇
  2009年   128篇
  2008年   265篇
  2007年   250篇
  2006年   211篇
  2005年   236篇
  2004年   220篇
  2003年   180篇
  2002年   157篇
  2001年   109篇
  2000年   91篇
  1999年   64篇
  1998年   70篇
  1997年   60篇
  1996年   68篇
  1995年   57篇
  1994年   54篇
  1993年   58篇
  1992年   51篇
  1991年   34篇
  1990年   40篇
  1989年   29篇
  1988年   44篇
  1987年   39篇
  1986年   30篇
  1985年   43篇
  1984年   56篇
  1983年   26篇
  1982年   35篇
  1981年   33篇
  1980年   36篇
  1979年   26篇
  1978年   36篇
  1977年   40篇
  1976年   20篇
  1974年   28篇
  1968年   15篇
排序方式: 共有4954条查询结果,搜索用时 15 毫秒
861.
The origin of the change of the thermodynamic properties of association between homogeneous and heterogeneous systems is highlighted by numerical experiments.  相似文献   
862.
The complex surface structure of gold-thiolate nanoparticles is known to affect the calculated density functional theory (DFT) excitation spectra. However, as the nanoparticle size increases, it becomes impractical to calculate the excitation spectrum using DFT. In this study, a new method is developed to determine the energy levels of the thiolate-protected gold nanoparticles [Au(25)(SR)(18)](-), Au(102)(SR)(44) and Au(144)(SR)(60). A 3 nm thiolate-protected nanoparticle is also modeled. The particle-in-a-sphere model is used to represent the core while the ligands are treated as point charge perturbations. The electronic structures obtained with this model are qualitatively similar to DFT results. The symmetry of the arrangement of the perturbations around the core plays a major role in determining the splitting of the orbitals. The radius chosen to represent the core also affects the orbital splitting. Increasing the number of perturbations around the core shifts the orbitals to higher energies but does not significantly change the band gaps and orbital splitting as long as the symmetrical arrangement of the perturbations is conserved. This model can be applied to any gold nanoparticle with a spherical core, regardless of its size or the nature of the ligands, at very low computational cost.  相似文献   
863.
A review of present and future on-chip rolled-up devices, which can be used to develop lab-in-a-tube total analysis systems, is presented. Lab-in-a-tube is the integration of numerous rolled-up components into a single device constituting a microsystem of hundreds/thousands of independent units on a chip, each individually capable of sorting, detecting and analyzing singular organisms. Such a system allows for a scale-down of biosensing systems, while at the same time increasing the data collection through a large, smart array of individual biosensors. A close look at these ultracompact components which have been developed over the past decade is given. Methods for the capture of biomaterial are laid out and progress of cell culturing in three-dimensional scaffolding is detailed. Rolled-up optical sensors based on photoluminescence, optomechanics, optofluidics and metamaterials are presented. Magnetic sensors are introduced as well as electrical components including heating, energy storage and resistor devices.  相似文献   
864.
The reactivity of E-H bonds (E = S, O, Cl) with Pt(II) complexes ligated by an N-heterocyclic phosphido-containing diphosphine ligand have been investigated. Addition of PhSH to [(PPP)Pt(PPh(3))][PF(6)] (1) results in clean formation of [(PP(H)P)Pt(SPh)][PF(6)] (3), in which the substrate has added across the Pt-P(NHP) bond. Similar reactivity occurs when 1 is treated with ROH (R = Ph, Me), but in this case the O-H bond adds across the Pt-P bond in the opposite direction producing [(PP(OR)P)Pt(H)(PPh(3))][PF(6)] (R = Ph (4), Me (5)). HCl addition to 1 cleanly generates [(PP(H)P)PtCl][PF(6)] (6(PF6)). The neutral Pt-NHP complex (PPP)PtCl (2) exhibits similar reactivity; however, in the presence of the nucleophilic Cl(-) anion, the (PP(OR)P)Pt(H)Cl species presumably generated via addition of ROH (R = Me, Et) undergoes an Arbuzov-like dealkylation reaction to exclusively form the N-heterocylic phosphinito species (PP(O)P)Pt(H) (7).  相似文献   
865.
The series of complexes [Ru(bpy)(3-n)(btz)(n)][PF(6)](2) (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, 2n = 1, 3n = 2, 4n = 3) have been prepared and characterised, and the photophysical and electronic effects imparted by the btz ligand were investigated. Complexes 2 and 3 exhibit MLCT absorption bands at 425 and 446 nm respectively showing a progressive blue-shift in the absorption on increasing the btz ligand content when compared to [Ru(bpy)(3)][Cl](2) (1). Complex 4 exhibits a heavily blue-shifted absorption spectrum with respect to those of 1-3, indicating that the LUMO of the latter are bpy-centred with little or no btz contribution whereas that of 4 is necessarily btz-centred. DFT calculations on analogous complexes 1'-4' (in which the benzyl substituents are replaced by methyl) show that the HOMO-LUMO gap increases by 0.3 eV from 1'-3' through destabilisation of the LUMO with respect to the HOMO. The HOMO-LUMO gap of 4' increases by 0.98 eV compared to that of 3' due to significant destabilisation of the LUMO. Examination of TDDFT data show that the S(1) states of 1'-3' are (1)MLCT in character whereas that of 4' is (1)MC. The optimisation of the T(1) state of 4' leads to the elongation of two mutually trans Ru-N bonds to yield [Ru(κ(2)-btz)(κ(1)-btz)(2)](2+), confirming the (3)MC character. Thus, replacement of bpy by btz leads to a fundamental change in the ordering of excited states such that the nature of the lowest energy excited state changes from MLCT in nature to MC.  相似文献   
866.
Various 2-thienyllithium derivatives were investigated in the solid state by X-ray diffraction and in solution by 2D NMR experiments. The determined structures of [(Et(2)O)Li(C(4)H(3)S)](4) (1), [(THF)(2)Li(C(4)H(3)S)](2) (2), [(DME)Li(C(4)H(3)S)](2) (3), [(TMEDA)Li(C(4)H(3)S)](2) (4), and [(PMDETA)Li(C(4)H(3)S)] (5) (DME = 1,2-dimethoxyethane, TMEDA = N,N,N',N'-tetramethylethylene-1,2-diamine, and PMDETA = N,N,N',N",N"-pentamethyldiethylenetriamine) were solved in nondonating toluene and provide firm ground for diffusion-ordered NMR spectroscopy as well as heteronuclear Overhauser enhancement NMR spectroscopy. The distance relation of nuclear Overhauser effects with a factor of r(-6) is employed to gain further insight into the aggregation degree of 1-5 in solution. Comparison of the slope provided by the linear region of the buildup curves and of the ∑r(-6) calculated distances from the crystal structures offers a handle to judge the structure retention versus conversion in solution. The structures of 3-5 are maintained in toluene solution. The data of 2, however, indicate a partial dissociation or a rapid exchange between the vertices of a tetrameric core and free THF molecules. Auxiliary exchange spectroscopy investigations showed that the signals of the nitrogen donor base containing compounds 4 and 5 exchange with the signals of nonlithiated thiophene. This is explained by exchange of the deuterium by a hydrogen atom via lithiation of toluene molecules.  相似文献   
867.
Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps. Additionally, during the course of these studies a new polycyclic compound (ArGe)(2)(C(7)H(12)) (10) was obtained in 60% yield from the reaction of 1,6-heptadiene and 1 via double [2 + 2] cycloaddition and gives evidence for a nonradical mechanism for these types of reactions.  相似文献   
868.
The heavier group 13 element alkene analogue, digallene Ar(iPr(4))GaGaAr(iPr(4)) (1) [Ar(iPr(4)) = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)], has been shown to react readily in [n + 2] (n = 6, 4, 2 + 2) cycloaddition reactions with norbornadiene and quadricyclane, 1,3,5,7-cyclooctatetraene, 1,3-cyclopentadiene, and 1,3,5-cycloheptatriene to afford the heavier element deltacyclane species Ar(iPr(4))Ga(C(7)H(8))GaAr(iPr(4)) (2), pseudoinverse sandwiches Ar(iPr(4))Ga(C(8)H(8))GaAr(iPr(4)) (3, 3(iso)), and polycyclic compounds Ar(iPr(4))Ga(C(5)H(6))GaAr(iPr(4)) (4) and Ar(iPr(4))Ga(C(7)H(8))GaAr(iPr(4)) (5, 5(iso)), respectively, under ambient conditions. These reactions are facile and may be contrasted with other all-carbon versions, which require transition-metal catalysis or forcing conditions (temperature, pressure), or with the reactions of the corresponding heavier group 14 species Ar(iPr(4))EEAr(iPr(4)) (E = Ge, Sn), which give very different product structures. We discuss several mechanistic possibilities, including radical- and non-radical-mediated cyclization pathways. These mechanisms are consistent with the improved energetic accessibility of the LUMO of the heavier group 13 element multiple bond in comparison with that of a simple alkene or alkyne. We show that the calculated frontier molecular orbitals (FMOs) of Ar(iPr(4))GaGaAr(iPr(4)) are of π-π symmetry, allowing this molecule to engage in a wider range of reactions than permitted by the usual π-π* FMOs of C-C π bonds or the π-n(+) FMOs of heavier group 14 alkyne analogues.  相似文献   
869.
Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these studies arises from the need to label biological samples site-specifically with suitable fluorescent dyes. In this work, we present an optimized strategy combining click chemistry and the genetic encoding of unnatural amino acids (UAAs) to overcome this limitation for proteins. We performed a systematic study with a variety of clickable UAAs and explored their potential for high-resolution single-molecule FRET (smFRET). We determined all parameters that are essential for successful single-molecule studies, such as accessibility of the probes, expression yield of proteins, and quantitative labeling. Our multiparameter fluorescence analysis allowed us to gain new insights into the effects and photophysical properties of fluorescent dyes linked to various UAAs for smFRET measurements. This led us to determine that, from the extended tool set that we now present, genetically encoding propargyllysine has major advantages for state-of-the-art measurements compared to other UAAs. Using this optimized system, we present a biocompatible one-step dual-labeling strategy of the regulatory protein RanBP3 with full labeling position freedom. Our technique allowed us then to determine that the region encompassing two FxFG repeat sequences adopts a disordered but collapsed state. RanBP3 serves here as a prototypical protein that, due to its multiple cysteines, size, and partially disordered structure, is not readily accessible to any of the typical structure determination techniques such as smFRET, NMR, and X-ray crystallography.  相似文献   
870.
Two isomers of Sm@C(92) and four isomers of Sm@C(94) were isolated from carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3). Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(II)(octaethylporphyrin) reveals the identities of two of the Sm@C(92) isomers: Sm@C(92)(I), which is the more abundant isomer, is Sm@C(1)(42)-C(92), and Sm@C(92)(II) is Sm@C(s)(24)-C(92). The structure of the most abundant form of the four isomers of Sm@C(94), Sm@C(94)(I), is Sm@C(3v)(134)-C(94), which utilizes the same cage isomer as the previously known Ca@C(3v)(134)-C(94) and Tm@C(3v)(134)-C(94). All of the structurally characterized isomers obey the isolated pentagon rule. While the four Sm@C(90) and five isomers of Sm@C(84) belong to common isomerization maps that allow these isomers to be interconverted through Stone-Wales transformations, Sm@C(1)(42)-C(92) and Sm@C(s)(24)-C(92) are not related to each other by any set of Stone-Wales transformations. UV-vis-NIR spectroscopy and computational studies indicate that Sm@C(1)(42)-C(92) is more stable than Sm@C(s)(24)-C(92) but possesses a smaller HOMO-LUMO gap. While the electronic structures of these endohedrals can be formally described as Sm(2+)@C(2n)(2-), the net charge transferred to the cage is less than two due to some back-donation of electrons from π orbitals of the cage to the metal ion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号