首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12000篇
  免费   554篇
  国内免费   58篇
化学   8738篇
晶体学   38篇
力学   295篇
数学   1857篇
物理学   1684篇
  2023年   92篇
  2022年   142篇
  2021年   202篇
  2020年   291篇
  2019年   305篇
  2018年   144篇
  2017年   166篇
  2016年   436篇
  2015年   476篇
  2014年   489篇
  2013年   648篇
  2012年   919篇
  2011年   922篇
  2010年   570篇
  2009年   492篇
  2008年   734篇
  2007年   703篇
  2006年   645篇
  2005年   629篇
  2004年   496篇
  2003年   404篇
  2002年   391篇
  2001年   184篇
  2000年   152篇
  1999年   144篇
  1998年   151篇
  1997年   148篇
  1996年   121篇
  1995年   93篇
  1994年   87篇
  1993年   98篇
  1992年   71篇
  1991年   69篇
  1990年   57篇
  1989年   72篇
  1988年   55篇
  1987年   38篇
  1986年   44篇
  1985年   59篇
  1984年   49篇
  1983年   50篇
  1982年   51篇
  1981年   59篇
  1980年   45篇
  1979年   47篇
  1978年   45篇
  1977年   44篇
  1976年   50篇
  1975年   42篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The synthesis and biological activities of some 4-oxo-1-or-2-substituted 1H-or-2H-pyrano[4,3-c]pyrazole derivatives are described.  相似文献   
952.
On-line coupled supercritical fluid extraction and gas chromatography (SFE-GC) has been utilized for the determination of PCBs and other organochlorine compounds in human milk and blood serum. The procedure involved preconcentration of the sample on C18-silica sorbent in an extraction cell: after precipitation of the proteins up to 20 ml of human milk was concentrated on 0.5 g of sorbent. Serum (up to 5 ml) was applied to the C18 material without pretreatment. Basic alumina was utilized as a selective adsorbent for lipids in the on-line SFE-GC system. The method was used to analyze milk and serum spiked with 0.5 and 10 ng of Aroclor 1260 and the results compared with those obtained by liquid–liquid extraction of serum.  相似文献   
953.
A new class of double-wheel molecules is manipulated on a Au(111) surface by the tip of a scanning tunneling microscope (STM) at low temperature. The double-wheel molecule consists of two subphthalocyanine wheels connected by a central rotation carbon axis. Each of the subphthalocyanine wheels has a nitrogen tag to monitor its intramolecular rolling during an STM manipulation sequence. The position of the tag can be followed by STM, allowing us to distinguish between the different lateral movements of the molecule on the surface when manipulated by the STM tip.  相似文献   
954.

In this work, the catalytic activity of carbon nanotubes (CNTs), carbon black (CB), and CNT-CB counter electrodes in the I/I3 reduction reaction is reported and compared with the Pt counter electrode. The fabricated counter electrodes were evaluated in dye-sensitized solar cells (DSSCs). The results indicate that the best cathodes were made from CNT10 (240 μm) and CB with a charge transfer resistance (RCT) of 2.70 Ω, and when the complete device shows 19.83 Ω of internal series resistance (RS), the photovoltaic parameters of these cells were JSC = 10.47 mA cm−2; VOC = 0.70 V; and FF = 57.90, with an efficiency of 4.29%, indicating a better interaction between the CNT10 in the 3D network of the counter electrode, generating a good charge transfer kinetics, in comparison with only CNT10 or CB.

  相似文献   
955.
Homo‐ and copolymers of di(ethylene glycol) methyl ether methacrylate (DEGMA) and oligo(ethyleneglycol) methyl ether methacrylate (OEGMA1100) were synthesized with various chain lengths via reversible addition fragmentation chain transfer (RAFT) polymerization in ethanol using [M]/[RAFT] ratios of 100 and 200. Kinetic investigations on the homo‐ and copolymerization of these monomers were performed using a parallel synthesizer resulting in well‐defined polymers with polydispersity indices mostly below 1.3. The polymerization kinetics are presented and discussed in detail surprisingly revealing that the DEGMA homopolymerization is slower than the OEGMA1100 homopolymerization. Transfer coefficients c were estimated to be ~0.5 for the RAFT polymerization of both DEGMA and OEGMA1100 resulting in hybrid behavior at the beginning of the polymerizations. Subsequent copolymerization also revealed fast incorporation of the OEGMA1100 and relatively slow incorporation of DEGMA resulting in well‐defined copolymers with a molecular weight up to 100 kDa and polydispersities around 1.20. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2811–2820, 2009  相似文献   
956.
This review focuses on how the mechanistic approach of physical organic chemistry can be used to elucidate the mechanisms behind complex biochemical networks. The dynamics of biochemical reaction networks is difficult to describe by considering their individual reactions, just as the dynamics of organic reactions is difficult to describe by considering individual electrons and atomic nuclei. Physical organic chemists have developed a useful set of tools to predict the outcome of organic reactions by separating the interacting molecules into modules (functional groups), and defining general rules for how these modules interact (mechanisms). This review shows how these tools of physical organic chemistry may be used to describe reaction networks. In addition, it describes the application of these tools to develop a mechanistic understanding of the dynamics of the complex network of hemostasis, which regulates blood clotting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
957.
We perform dynamical calculations on two robust N2–N2 potential energy surfaces in order to intercompare pressure broadening coefficients derived from close coupling and coupled states quantum dynamical methods, the semi-classical model of Robert and Bonamy and a full classical method. The coupled states and full classical results compare well with the experimental results or with close coupling values when available. This study confirms that the classical method is a good alternative at room and high temperatures to quantum dynamical methods. The results obtained using the semi-classical method however deviate from the other sets of data at all temperatures considered here (77–2400 K).  相似文献   
958.
Drying and pyrolysis of wood particles: experiments and simulation   总被引:3,自引:0,他引:3  
The objective of this study is to develop a flexible and stable numerical method to predict the thermal decomposition of large wood particles due to drying and pyrolysis. At a later stage, this model is applied to each particle of a packed bed and thus, forms the entire packed bed process as a sum of individual particle processes. Therefore, this approach can deal with particles of different sizes, shapes and properties. A general formulation of the conservation equations allows the geometry of a fuel particle to be treated as a plate, cylinder or sphere. The various processes such as heat-up, drying and pyrolysis are described by a set of one-dimensional and transient conservation equations for mass and energy. This allows for simultaneous processes e.g. reactions in time and covers the entire range between transport-limited (shrinking core) and kinetically limited (reacting core) reaction regimes. The particles interact with a gas phase by heat and mass transfer taking into account the Stefan correction due to the gas outflow during conversion. Experiments carried out span a temperature range between T=300 and 900 °C for particle sizes varying between 8 and 17 mm. A comparison between measurements and predictions of drying models yielded satisfactory agreement only for the constant evaporation temperature model and thus, indicating, that the drying process is transport limited by heat transfer for large wood particles. Likewise, predicted results of pyrolysis for the above-mentioned range of temperatures and sizes agreed satisfactorily with measurements.  相似文献   
959.
A cyclic molecule including a hexameric PNA sequence has been designed and synthesized in order to target the TAR RNA loop of HIV-1 through the formation of a "kissing complex". For comparison, its linear analogue has also been investigated. The synthesis of the cyclic and linear PNA has been accomplished following a liquid-phase strategy using mixed PNA and fully N-protected (aminoethylglycinamide) fragments. The interactions of this cyclic PNA and its linear analogue with TAR RNA have been studied and the results indicate clearly that no interaction occurs between the cyclic antisense PNA and TAR RNA, whereas a tenuous interaction has been detected with its linear PNA analogue.  相似文献   
960.
Mycophenolic acid (MPA) is an immunosuppressant drug which powerfully inhibits lymphocyte proliferation. Since the early 1990s it has been used to prevent rejection in organ transplantation. The requirement of therapeutic drug monitoring shown in previous studies raises the necessity of acquiring accurate and sensitive methods to measure MPA and its major metabolite mycophenolic acid glucuronide (MPAG).The authors developed a sample cleanup-free, rapid, and highly specific method for simultaneous measurement of MPA and MPAG in human plasma and serum using the novel technology of ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry. MPA- and MPAG-determinations were performed during a 2.0-min run time. Multiple calibration curves for the analysis of MPA and MPAG exhibited consistent linearity and reproducibility in the range of 0.05-100 (r > 0.999) mg L−1 and 4-4000 mg L−1 (r > 0.999), respectively. Limits of Detection were 0.014 mg L−1 for MPA and 1.85 mg L−1 for MPAG. Lower Limits of Quantification were 0.05 mg L−1 for MPA and 2.30 mg L−1 for MPAG. Interassay imprecision was <10% for both substances. Mean recovery was 103.6% (range 78.1-129.7%) for MPA and 111.1% (range 73.0-139.6%) for MPAG. Agreement was good for MPA and MPAG between the presented method and a validated HPLC-MS/MS method. The Passing-Bablok regression line for MPA and MPAG was HPLC-MS/MS = 1.14 UPLC-MS/MS—0.14 [mg L−1], r = 0.96, and HPLC-MS/MS = 0.77 UPLC-MS/MS + 0.50 [mg L−1], r = 0.97, respectively. This sample cleanup-free and robust LC-MS/MS assay facilitates the rapid, accurate and simultaneous determination of MPA and MPAG in human body fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号